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Abstract. We construct a class of abstract objective functions on the
cube, such that the algorithm BottomAntipodal takes exponentially
many steps to find the maximum. A similar class of abstract objective
functions is constructed for the process BottomTop, also requiring ex-
ponentially many steps.

1 Introduction

The model. Let P ⊆ IRn be a convex polyhedron (given as the intersection of m
halfspaces) and c : IRn → IR be a linear objective function; linear programming
seeks a vertex of P maximizing c. While linear programming is known to have
a polynomial time algorithm in the bit size of the input, its complexity in the
so-called unit-cost model remains an important open question. That is, what
is the smallest f(n, m) such that any linear program in dimension n with m
constraints can be solved in time at most f(n, m) if all arithmetic operations are
assumed to incur unit cost?

Numerous researchers studied this problem and still our understanding is far
from satisfactory. The best known algorithms, due to Kalai [9] and Matoušek,
Sharir, and Welzl [11], work in time eO(

√
m log n). An important aspect of both

approaches is that they disregard most of the geometric content of the problem
and consider only a basic combinatorial skeleton.

One of the most natural and useful combinatorial simplifications is the con-
cept of abstract objective functions, which was first introduced by Adler and his
coauthors [1, 2], and later by Williamson Hoke [15] and Kalai [8] under different
names. Given a convex polytope P with vertex set V , the graph of P is the
graph G(P ) with vertex set V and with edges corresponding to the edges (1-
dimensional faces) of P . A function f : V → IR is called an abstract objective
function if on every face F of P there is a unique local maximum of f . That is,
there is a unique vertex v ∈ F , such that v has a larger f -value than all its neigh-
bors in G(P ). In particular, this unique local maximum is a global maximum on
F .
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Note that a generic linear function is a special case of an abstract objective
function, though most abstract objective functions of a given polytope cannot be
achieved by a linear function. The model is still quite powerful: Kalai’s subexpo-
nential randomized simplex algorithm for linear programming works for arbitrary
abstract objective functions.

In our paper we prefer to formulate our results in an alternative but equiv-
alent framework. An orientation of the edges of the graph G(P ) is called an
acyclic unique sink orientation1 or AUSO of the polytope P if the induced sub-
graph of G(P ) on the vertex set of any face of P has exactly one sink (vertex
of outdegree zero). We assume that the orientation is given by an oracle: after
querying a vertex the oracle returns the orientation of the edges incident to the
queried vertex.

Any abstract objective function induces an AUSO: Orient every edge from
the vertex with the smaller value to the one with the larger value. The optimum
vertex with the largest value of the objective function becomes the (unique)
sink of G(P ). On the other hand, given an AUSO, the vertices of G(P ) can be
numbered according to an arbitrary linear order which extends the partial order
defined by the AUSO. This numbering defines an abstract objective function on
P .

The algorithm. The oldest and most natural combinatorial attack to solve a lin-
ear program is the simplex algorithm. Geometrically, it can be viewed as follows:
We start at some initial vertex of the polytope P and at each step we move from
the current vertex v along an edge of P to another vertex w with c(w) > c(v)
(this is called a pivot step). Typically there are several possible choices of w
at each step, and the way of selecting one of them is called a pivot rule. The
simplex algorithm terminates for every pivot rule, of course, but the difference
in the number of steps for different pivot rules may be enormous.

Earlier results on the worst-case complexity of various pivot rules are rather
discouraging. For Dantzig’s original pivot rule, Klee and Minty [10] constructed
a class of examples where this rule leads to an exponential number of steps. It
is a polytope isomorphic to the cube [0, 1]n, but the cube is slightly deformed in
such a way that there is a Hamiltonian monotone path, that is, a directed path
visiting all vertices such that a suitable linear objective function increases along
it. Subsequently such worst-case examples were found by various researchers for
almost all known deterministic pivot rules; see Goldfarb [6] for an overview and
Amenta and Ziegler [3] for a new unified view of these examples.

Motivated by the unsuccessful attempts of deterministic simplex algorithms,
Kaibel [7] suggested a very non-simplex-like algorithm, something which takes
not only one of the outgoing edges into account, but, in some sense all of them. Of
course in order to abandon the idea of progress along an edge, one needs to know
something about the structure of the polytope. For example, when our polytope
is combinatorially equivalent to the n-dimensional cube, then it makes sense to

1 For some purposes, it is also very interesting to consider unique-sink orientations of
polytopes that are not necessarily acyclic (see, e.g., [12, 14, 13]).



speak about an “antipodal vertex”. Each vertex is at the bottom of the face
generated by its outgoing edges, as it is the source of this face. Motivated by the
picture of the orthogonal cube, the algorithm BottomAntipodal jumps from
the bottom vertex of the face generated by its outgoing edges to the antipodal
vertex within this face.

We also consider a process called BottomTop (also suggested by Kaibel
[7]), which, in some sense, represents the most greedy approach one can imagine.
Being at a vertex v and knowing the adjacent outgoing edges, one knows that
every vertex in the face generated by these outgoing edges is better than the
current vertex. Suppose we have access to an oracle which tells us the best vertex,
i.e., the sink, in this subcube, and thus we are able to jump there in one step.
It is then plausible to believe this to be a good idea. A step of the process
BottomTop is defined by jumping from the current vertex v to the sink v′ in
the subcube generated by the outgoing edges incident to v. BottomTop is of
course not an algorithm, since we need to have access to an oracle which tells us
the sink of a subcube once we provide the source.

The results. In Sect. 4 of this paper we construct an acyclic unique sink ori-
entation of the n-dimensional cube, such that BottomAntipodal takes an
exponential number of queries to find the sink. In Sect. 5 we give a construction
of an AUSO of the cube on which BottomTop performs an exponential number
of queries.

2 Preliminaries on AUSOs

Let ei ∈ {0, 1}n be the vector having 1 at position i and zeros elsewhere. For
zero-one vectors v and w, v + w is understood as the modulo 2 sum of v and w.
The notation vw stands for the concatenation of the vectors v and w. The zero
vector of dimension greater than one is denoted by 0 and the reader is trusted
to figure out the correct length of the vector.

From now on, by an AUSO we will mean an acyclic unique-sink orientation of
the cube [0, 1]n (we will not consider any other polytopes). The graph of the n-
dimensional cube is the usual n-dimensional (graph-theoretic) cube with vertex
set {0, 1}n. The neighbors of a vertex v are v + ei, i = 1, 2, . . . , n.

Formally we will identify an n-dimensional AUSO A with its outmap sA :
{0, 1}n → {0, 1}n, where sA(v)i = 1 if the edge {v, v + ei} is oriented from v
towards v + ei, and sA(v)i = 0 otherwise, i.e., if that edge is oriented from v + ei

towards v. It is known that the outmap sA is a bijection for any AUSO A, even
if we restrict it to an arbitrary subcube. In particular, an AUSO does not only
have a unique sink per face, but also, e.g., a unique source. For this and other
facts about unique sink orientations of cubes see, for example, [14].

We say that two AUSOs A and B are isomorphic if there is a bijection
between the vertices of A and the vertices of B that preserves the oriented
edges.



Fig. 1. The blowup-
construction: Four identical
2-dimensional AUSO (drawn in
black) are interconnected by 22

2-dimensional frames (drawn in
gray).

In the following we describe two lemmas, special cases of results of [13],
which allow us to construct new AUSOs from old ones. The first lemma uses the
product structure of the cube.

Lemma 1 (Blowup construction, [13, Lemma 3]). Let A be an AUSO of
dimension m and for each u ∈ {0, 1}m let Bu be a n-dimensional AUSO. Then
the map sC : {0, 1}m+n → {0, 1}m+n defined by sC(uv) = sA(u)sBu

(v) is the
outmap of an (m + n)-dimensional AUSO C.

One can imagine that we blow up each vertex of A to a n-dimensional cube,
which is oriented according to some AUSO, generally different for different ver-
tices. For us, however, a complementary view will be more useful: We can obtain
C by taking 2n copies of A and, for each vertex u of A, interconnecting all the
2n copies of u by an n-dimensional cubic “frame” oriented according to Bu. This
is illustrated in Fig. 1.

The second lemma, the heart of our recursion, allows to change the ori-
entation on a smaller subcube under appropriate conditions. Let A be an n-
dimensional AUSO and let S be a face of the n-dimensional cube (isomorphic to
an m-dimensional cube for some m ≤ n). We call S a hypersink of A if all edges
connecting vertices of S to vertices outside S are oriented towards S.

Lemma 2 (Hypersink reorientation, [13, Lemma 5]). Let A be an n-
dimensional AUSO and let S be an m-dimensional hypersink of A. If the edges
within S are reoriented according to an arbitrary m-dimensional AUSO B, and
the orientations of all other edges are left as in A, then the resulting orientation
of the n-dimensional cube is an AUSO.

As a warm-up let us recall the definition of the Klee-Minty cube in the
framework of our lemmas. The zero-dimensional Klee-Minty cube KM0 consists
of one vertex. To construct KMn we take two copies K and K ′ of KMn−1

and flip the orientations of all edges in one of them, say in K ′. Then we add a
perfect matching between the vertices of K and K ′ having identical coordinates
and orient these edges from K ′ towards K . Note that by Lemma 1 the resulting
orientation is an AUSO: We interconnect 2n−1 copies of a 1-dimensional USO
using the two frames K and K ′. Originally the Klee-Minty cube was defined
as a geometric object. It is a polytope combinatorially equivalent to the cube,
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Fig. 2. An AUSO A with a graph Tba(A) of height 4.

which produces the orientation defined above if we evaluate an appropriate linear
objective function on its vertices. (See, e.g, [4] for a more detailed study on Klee-
Minty cubes.) As we mentioned in the introduction the Klee-Minty cube is a
worst-case example for many of the natural pivot rules of the simplex algorithm.
As it turns out, BottomAntipodal and BottomTop are very efficient on
the Klee-Minty cube, even on a much wider class of AUSOs called decomposable
orientations (See [15] for an introduction to decomposable AUSOs).

Lemma 3. Starting at an arbitrary vertex, BottomTop needs at most n + 1
steps to find the sink of the n-dimensional Klee-Minty cube.

Due to the construction of the Klee-Minty cubes for the coordinate n all
edges are oriented towards the same facet S0. In particular all subcubes have
their sink in S0, so after the first step BottomTop will be in S0. Repeating this
argument inductively, after n + 1 steps we are in the sink. A similar argument
works for BottomAntipodal (see [13, Proposition 7]).

3 The BottomAntipodal Tree

The behavior of BottomAntipodal on an AUSO A can be described by the
following directed graph Tba(A): The vertex set of Tba(A) is the vertex set of the
underlying cube of A. Two vertices v, w form an edge v → w if v + sA(v) = w.
In particular, every vertex v has exactly one outgoing edge v → v + sA(v). We
call v + sA(v) the successor of v and denote it by succA(v). The sink o of sA is
special since it is the only vertex in Tba(A) having a loop. For an example, see
Fig. 2.

The unique path starting in a vertex v in Tba(A) will be called the trace of v.
Obviously, the trace of a vertex v is the sequence of queries BottomAntipodal
produces starting in v.

BottomAntipodal will terminate on any AUSO, i.e., Tba(A) is a tree. The
vertex v is a source in the cube spanned by v and v+sA(v). The following lemma
provides us with a path from v to v+sA(v) in the AUSO A. (The proof is rather
easy and omitted.)



Lemma 4. There is a path from the source of an AUSO to any vertex of the
cube.

By the above lemma, the trace of a vertex in Tba(A) induces a trail in A.
In particular, if Tba(A) contains a cycle, so does A. Hence for an AUSO A the
graph Tba(A) is a tree, the so-called bottom-antipodal tree. This tree was first
introduced by Kaibel [7] in connection to randomized simplex algorithms.

Since Tba(A) is a tree, the trace of a vertex v is a path in Tba(A) to the sink
of A. The length of this path is the height hA(v) of v. Obviously, hA(v) differs
by one from the number of queries of BottomAntipodal starting in v. The
height h(A) of Tba(A) is defined as the maximal height of a vertex in A and the
average height h̃(A) is the average over the heights of all vertices in A, that is,
for an n-dimensional A we have

h(A) = max {hA(v) | v ∈ {0, 1}n } h̃(A) =
1
2n

∑
v∈{0,1}n

hA(v).

The height of A corresponds to the worst-case behavior of BottomAntipo-
dal, whereas the average height reflects the expected behavior if we randomize
the starting vertex. Thus, if we can construct a family of examples for which the
maximal height grows exponentially, then BottomAntipodal has exponential
worst-case complexity.

4 The Construction

Theorem 1. Let A be an arbitrary n-dimensional AUSO. Then there exists a
(n + 2)-dimensional AUSO D, such that the height of D is at least 2h(A) and
the average height of D is at least 3

4 h̃(A) + 1
2h(A).

Starting, e.g., with A2 = KM2 and the orientation A3 from Fig. 2, Theorem 1
yields a sequence of AUSOs with exponential height.

Corollary 1. In every dimension n ≥ 2 there is an AUSO, such that the height
of the corresponding bottom-antipodal tree is at least

√
2

n
and the average height

is at least 2
5

√
2

n
.

Proof (of Theorem 1).
We can assume without loss of generality that the sink of A is in 0. As an

intermediate step we first construct an (n + 2)-dimensional AUSO C, which is
the blow-up of A. For each vertex u ∈ {0, 1}n we select a 2-dimensional AUSO
Bu which is isomorphic to KM2. We do not, however, select identical copies. Let
K0 = KM2 be the 2-dimensional Klee-Minty cube, while K1 be KM2 with its
two coordinates permuted. (Fig. 3)

Now let Bu = K0 if the height hA(u) is even and let Bu = K1 if hA(u) is odd.
We let C be the blowup of A by these Bu. So, according to our preferred view
of the blowup construction, we take 4 copies of A and interconnect them by the
2-dimensional frames Bu, each is the Klee–Minty cube with possibly permuted
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Fig. 3. The two orientations K0

and K1.

coordinates. All Bu have their sink at u00, that is, in the same n-dimensional
face S0, which is a copy of A. Consequently, this copy of A is a hypersink in C.
Let vmax be a vertex of A with hA(vmax) = h(A). We now reorient the hypersink
S0 by rotating vmax to 0 (which used to be the sink in S0). More formally, we
obtain a new orientation A′ isomorphic to A, where the outmap of a vertex z is
obtained by sA′(z) = sA(z+w). Then we orient the hypersink S0 of C according
to A′ and we denote the resulting (n + 2)-dimensional AUSO by D.

We can also express the outmap of D formally. For an (n + 2)-dimensional
vector v denote by v′ the projection of v to the first n coordinate, while v′′ is
the projection of v to the last 2 coordinates. Then sD(v)′ = sA(v′) unless v′′ = 0
in which case sD(v)′ = sA(v′ + vmax). The last two coordinates sD(v)′′ of the
outmap sD(v) only depend on the last two coordinates of v and the parity of
hA(v′). See Table 1 for the details.

Table 1. The outmap of the constructed AUSO D in the last two coordinates and the
color-coding of the vertices of D.

v′′ 00 11 10 01

hA(v′) even odd even odd even odd

sD(v)′′ 00 01 10 10 11 11 01

color blue green red yellow yellow red

We introduce a color-coding of the vertices depending on where they lie in
the 2-dimensional Klee-Minty frame they belong to. The hypersink S0, having
vertices with last two coordinates 00, is composed of blue vertices only. The
green vertices occupy the n-dimensional subcube S3 with last two coordinates
11. The remaining two subcubes, S1 and S2 are occupied by yellow and red
vertices, depending on the parity of the height of the projection of the particular
vertex in A. Crucially, v ∈ S1 ∪ S2 and v + 011, being in the same Klee-Minty
frame, have different colors; one of them is red, the other is yellow. See Table 1
on how the vertices are colored. Fig. 4 aims to illustrate the construction and
color-coding.

In the following we make a few observations about the successor succD(v) of
a vertex v ∈ {0, 1}n+2 in the bottom antipodal tree of D.

The successor of a blue vertex is blue. Moreover if v is blue then succD(v)′ =
succA′(v′). In other words once BottomAntipodal is in the hypersink S0,
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Fig. 4. The orientations A3 and A4. The orientation A3 to the left is constructed from
the 1-dimensional AUSO A1 with sink in 0. The orientation A4 to the right is based on
A2. The subcubes S1, S2, and S3 contain A1 and A2, respectively, whereas S0 contains

a flipped variant. The colors are encoded the following way: yellow , green , blue

, red .

it never leaves S0 and follows the trace of A′ (which is isomorphic to A). In
particular hD(v) = hA′(v′) = hA(v + vmax).

Next we check the height of the four vertices with v′ = 0. By construction,
the vertices 001, 010, and 011 are the sinks of the copies of A in S1, S2, S3,
respectively. In the subcube S0 we rotated A, such that the sink and vmax change
position. Hence, 000 has height hD(000) = hA(vmax) = h(A). The vertex 010
has only its (n + 1)-edge outgoing. Thus, its successor is 000 and hD(010) =
1 + hD(000) = 1 + h(A). The vertex 001 has outgoing edges along coordinate
(n+1) and (n+2) and its successor is 010. Therefore hD(001) = 1+hD(010) =
2+h(A). Finally, the vertex 011 has only its (n+2)-edge outgoing and hD(011) =
1 + hD(010) = 2 + h(A).

The remaining vertices are considered by their color. Assume now that v is
not blue and v′ 6= 0.

If v is red then its successor is blue.
If v is yellow then its successor is also yellow. Moreover succD(v)′ = succA(v′).

A yellow vertex is either in S1 or S2. Since sD(v)′′ = 11, the successor of v is
in the antipodal n-face. Moreover succD(v)′ = succA(v′), since the copies of A
in S1 and S2 are translates of each other. Now succD(v) is yellow because the
height of succD(v)′ is one less, thus has a different parity than the height of v′.
Thus, the trace of v reaches the sink of S2 through yellow vertices while the
first n coordinates are going through the trace of v′ in A. Hence, we have that
hD(v) = hA(v′) + 1 + hD(010) = hA(v′) + h(A) + 2.

If v is green then its successor is yellow. Moreover succD(v)′ = succA(v′).
The argument is similar to the above. As v is in S3 and sD(v)′′ = 01 or 10,

the successor of v is either in S1 or S2 Moreover succD(v)′ = succA(v′), since



the copies of A in S3, S1, and S2 are translates of each other. Now succD(v)
is yellow: The height of succD(v)′ has a different parity than the height of v′.
Hence, succD(v) is in a different frame than v and sD(succD(v))′′ = 11. In fact
the successor of v is identical to the successor of the yellow vertex w in the 2-
dimensional Klee-Minty frame v belongs to. Quantitatively, hD(v) = hD(w) =
hA(w′) + h(A) + 2 = hA(v′) + h(A) + 2.

Now consider the green vertex u with u′ = vmax. By the above we obtain
that

h(D) ≥ hD(u) = hA(u′) + h(A) + 2 = 2h(A) + 2.

For the average height h̃(D) we forget about the red vertices (as we don’t
know their height) and get (with B being the set of blue vertices, Y the set of
yellow vertices and G the set of green vertices)

h̃(D) =
1

2n+2

∑
v

hD(v) ≥ 1
2n+2

(∑
v∈B

hD(v) +
∑
v∈Y

hD(v) +
∑
v∈G

hD(v)

)

=
1
4
· 1
2n

∑
v∈B

hA′(v′) +
1
4
· 1
2n

∑
v∈Y

hA(v′) +
1
4
· 1
2n

∑
v∈G

hA(v′) +
h(A)

2
+ 1

=
3
4
h̃(A) +

1
2
h(A) + 1.

ut

5 The BottomTop Tree

Recall that the process BottomTop in each step jumps to the sink of the sub-
cube spanned by the outgoing edges of the current vertex. We define a directed
graph Tbt(A), similar to Tba(A). The vertex set of Tbt(A) is the vertex set of A.
Two vertices u and v are connected by an edge u → v, if v is the sink in the
subcube spanned by u and the outgoing edges incident to u. Again, we call v
the successor of u. Since A has a unique sink in every subcube, each vertex u
has exactly one successor v. Also, since A is acyclic, by Lemma 4 again Tbt(A)
is a tree, the bottom top tree. Let tA(v) be the height of v in Tbt(A), t(A) be the
height of Tbt(A) and t̃(A) be the average height of Tbt(A).

Theorem 2. Let A be an arbitrary n-dimensional AUSO. Then there exists a
(n + 2)-dimensional AUSO D, such that the height of the bottom top tree of D
is at least 2t(A) and the average height is at least 1

2 t̃(A) + 1
4 t(A).

Proof. We repeat the construction in Theorem 1, but now we use t instead of h.
That is, vmax now is of maximal height with respect to tA and the copies of K0

and K1 for the frame are chosen according to the parity of tA(u).
With the same color coding as in Theorem 1 we now have the following

picture. As before, blue vertices have blue successors and succD(v)′ = succA′(v′)
provided v is a blue vertex. The vertex 000 corresponds to vmax in A, hence



tD(000) = t(A). The vertices 001 and 010 have successor 000 and thus tD(001) =
1 + t(A) = tD(010). Finally, 011 has successor 010.

Assume that v′ 6= 0. Red and yellow vertices all have blue successors. The
major difference, compared to the proof of Theorem 1 is that now the green
vertices have green successors. A green vertex v has exactly one of the edges
along coordinates n + 1 and n + 2, say n + 1, outgoing. Thus, the subcube B
spanned by v and its outgoing edges consists of two facets, each is a translate of
the subcube B′, spanned by v′ and its outgoing edges in A. The sink of B is either
in the vertex w′01 or w′11, where w′ is the sink of B′. Since w′ = succA(v′), the
value tA(w′) is one less, thus has a different parity than tA(v′). Thus the edge
between w′01 and w′11 is oriented towards w′11, which is then the sink of B and
the successor of v. Note, that w′11 is a green vertex and succD(v)′ = succA(v′).

For u = vmax11 we now obtain tD(u) = tA(vmax) + 2 + t(A) = 2t(A) + 2.
The average height of D we estimate by forgetting about all the red and

yellow vertices. Summing over the green and blue vertices we get an estimate of

t̃(D) ≥ 1
2
t̃(A) +

1
4
t(A).

ut

Easy calculation shows that t(A2) = 2, t̃(A2) = 1, t(A3) = 4, and t̃(A3) =
7/4. This yields the following corollary.

Corollary 2. In every dimension n ≥ 2 there is an AUSO, such that the height
of the corresponding BottomTop tree is at least

√
2

n
and the average height is

at least 1
6

√
2

n
.

6 Remarks and Open Problems

1. In [14] unique sink orientations of cubes were investigated, which are not
necessarily acyclic. As it turns out this more general model is quite useful, for
example it contains linear programming in its whole generality, not just on poly-
topes combinatorially equivalent to the cube. This connection is more abstract
than the obvious relation to AUSOs, more details about it are found in [5]. Bot-
tomAntipodal is also possible to perform on this more general model, except
that it is even less useful than for AUSOs since there BottomAntipodal can
cycle.

2. It is an intriguing open question to decide what happens when Bot-
tomAntipodal or BottomTop is performed on a realizable AUSO, that is
on a polytope combinatorially equivalent to the cube. Note that for the Klee-
Minty-cube, and in fact for the much larger class of decomposable orientations,
both processes have a worst case running time of n + 1.

Also, we don’t know whether it is possible to extend our construction to
AUSOs which satisfy the Holt-Klee condition. (The Holt-Klee condition, satisfied
by all realizable polytopes, requires that there are d edge-disjoint source-to-sink
paths in any d-dimensional face of the polytope.)
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14. T. Szabó, E. Welzl. Unique sink orientations of cubes. In Proc. 42nd IEEE Symp.
on Foundations of Comput. Sci., pages 547–555, 2001.

15. K. Williamson Hoke. Completely unimodal numberings of a simple polytope. Dis-
crete Appl. Math., 20:69–81, 1988.


