
Software project

Participating in the
ACM SIGSPATIAL GIS CUP 2013

programming contest

May 2013

Sebastian Kürten (sebastian.kueten@fu-berlin.de)

Contents

1 Introduction 1

1.1 Outline . 1

1.2 Definitions . 1

1.3 Problem definition . 2

2 Training data 3

2.1 Regions . 3

2.2 Points . 3

3 Preliminaries 6

3.1 Input . 6

3.2 Preprocessing . 7

3.3 Output . 8

4 The Inside query 9

4.1 Simple solution . 9

4.2 Using spatial indexing . 9

4.3 The point in polygon problem . 10

4.3.1 The crossings test . 11

4.3.2 An interval-tree based crossings test 11

4.3.3 A bucket based crossings test . 13

4.3.4 A bins based crossings test . 13

4.3.5 The adaptive grid approximation method 13

4.4 Performance evaluation . 15

5 The Within-N query 16

5.1 Simple solution . 16

5.2 Using spatial indexing . 16

5.3 The within distance problem . 16

5.3.1 Simple solutions . 17

5.3.2 Using spatial indexing for segments . 19

5.4 Performance evaluation . 19

6 Outlook 20

1 Introduction

The problem of the SIGSPATIAL GIS CUP 2013 programming contest deals with the problem
of evaluating spatiotemporal predicates defined on sets of geographic data. The basic data
types involved in the problem are points and regions. A single point is defined by its
coordinate and may represent for example the position of a car. A region is an object of
two-dimensional shape, a discrete representation of an area, specified by a set of polygonal
objects. In the form considered here these areas may consist of several disjoint polygons and
each of those polygons may contain holes. A region is capable of modeling the geometry of
complex geographic objects like country boundaries or clouds.

On top of this, the data used in our problem is not only of geometric nature but also contains a
temporal component. Instead of points we deal with sequences of points over time and instead
of regions we deal with sequences of regions over time. Think of a sequence of points as of the
trajectory of a moving object, like a car for example. So instead of one position of the car,
we have the position of the car at several points in time. Similarly a sequence of regions may
represent the movement and transformation of a cloud, where not only its position changes
depending on the time but also its shape. We are dealing with discrete representations of such
data here, that means they are not only discrete in terms of their geometric representation
but also in respect to their temporal component. We are looking at different representation of
the same object for different points in time and each representation is considered valid for the
span of time beginning at its definition until it is replaced by a more recent representation.

The algorithmic problem to solve here is to evaluate two predicates defined on sets of such
data. First, given a point with an associated timestamp we would like to find all regions that
the given point lies within at the specified time. Second, given a point with timestamp we
would like to find all regions that are, at the specified time, within a specified distance of that
point.

1.1 Outline

Section 1.2 explains the input data provided by the contest committee and introduces formal-
ization that will be used in the remainder of the document. Based on this, section 1.3 formally
describes the problems to be solved. Section 2 presents the training data provided by the com-
mittee. Sections 3 to 5 present the solutions to the problems that have been implemented.
The preliminary steps that had to be undertaken such as parsing input data, preprocessing
data and formatting output are described in section 3. Section 4 presents algorithms for the
inside query and section 5 deals with algorithms for the within-n query.

1.2 Definitions

• The basic data types point and region consist of

– an identifier that allows to model a moving object by defining multiple instances
with the same identifier,

– a timestamp which defines the starting time of validity of an instance

– and an geometric component that models the geometric part of the object at
the specified time.

• Let p = (pId, pt, pgeom) be a point with identifier pId, timestamp pt and geometry pgeom

• Let r = (rId, rt, rgeom) be a region with identifier rId, timestamp rt and geometry rgeom

• The problem presented here deals with collections of points and regions:

1

– let P be the set of all input points,

– let R be the set of all input regions.

• For a given point p, let seq(p) be the set of all points with the same identifier, that is
seq(p) = {q ∈ P|qId = pId}. We will call seq(p) the sequence of p.

• For a given region r, let seq(r) be the set of all regions with the same identifier, that is
seq(r) = {s ∈ R|sId = rId}. We will call seq(r) the sequence of r.

• Let seq(P) be the set of all sequences of input points

• Let seq(R) be the set of all sequences of input regions

1.3 Problem definition

• Input:

– Set of general regions R, |R| ≤ 500

– Set of points P, |P| ≤ 1million

• Output:

– List of tuples (point, region) that satisfy a given spatio-temporal predicate

– Two different predicates:

∗ p Inside r: point p is inside the interior of region r
∗ p Within-N r: point p is within a specified distance of region r

– In addition to the spatial aspect, these queries are further specified to have a
temporal constraint:

∗ For each point, not the whole set of regions is to be considered as candidates
for satisfaction of the predicates, but only the one instance over time of each
sequence of regions that exists at the point in time that is associated with the
query point.
∗ That means that for each sequence of regions R there is at each point in time

at most one instance r ∈ R that is eligible for satisfying the predicate for a
specified point.

– more formally: Let

∗ p = (pId, pt, pgeom) be a query point,
∗ r = (rId, rt, rgeom) be a region with r ∈ R,
∗ then p Inside r is true iff (pgeom Inside rgeom) ∧ (rt � pt) ∧ (∀s ∈ (seq(r) \
r) : (st < rt ∨ st > pt))

∗ and p Within-N r is true iff (distance(pgeom, rgeom) < N) ∧ (rt � pt) ∧
(∀s ∈ (seq(r) \ r) : (st < rt ∨ st > pt))

2

2 Training data

The training data consists of two sets of regions and two sets of points. The polygonal training
data contains 10 and 15 sequences of regions while the point training data contains 500 and
1000 sequences of points.

2.1 Regions

The following figure illustrates the regions found in the training data set. The dataset contains
30 and 40 regions distributed over 10 and 15 sequences respectively.

(a) 10 sequences (b) 15 sequences

Figure 1: Polygonal training data

2.2 Points

The following figures illustrate the points found in the training data set along with the regions.
The dataset contains approximately 40000 and 70000 points distributed over 500 and 1000
sequences respectively.

3

Figure 2: All points together with polygonal input

4

Figure 3: Four sequences of point input together with polygonal input

5

3 Preliminaries

In order to deal with the primary algorithmic problems of the contest some secondary problems
had to be solved. This includes reading and parsing of input data, formatting results for
output and some preprocessing that makes the data easier to handle in further steps. This
section will deal with those problems so that the remainder of this report may focus on the
algorithmic problems, i.e. predicate evaluation for sets of already preprocessed data.

3.1 Input

The program receives as input two files, one for points and one for regions. The input
data comes in form of an odd line based text format that combines structured text data
with XML strings embedded within such structured text. Each line starts with the string
POINT:<ID>:<TIMESTAMP>: or POLYGON:<ID>:<TIMESTAMP>: followed by an XML snippet in
the so-called GML format which is a flexible and verbose format for storing geographic data.
Figures 4 and 5 show examples of such input data where a single line of input data has been
reformatted with additional whitespace and line-breaks for better readability.

POINT:0:501:<gml:Point srsName="EPSG:54004"
xmlns:gml="http://www.opengis.net/gml">

<gml:coordinates decimal="." cs="," ts=" ">
-1.3148438178342E7,3986007.33707501

</gml:coordinates>
</gml:Point>

Figure 4: Example of point input data

When parsing the GML part of the input with an appropriate library that handles this kind
of data with all its flexibility such as the GML implementation of the GeoTools1 opensource
project, the program takes so much time parsing input data that this step becomes by far the
dominant part of the overall program.

Thus specialized methods have been developed to parse the input data with minimal overhead,
using as much information about the structure of data as possible while maintaining a certain
level of robustness against variations that may occur in the input data as a result of the
flexibility of the GML format. Anyway I am making assumptions about the input that are
not necessarily true. For instance I am completely ignoring the GML attributes that define
the decimal point character and the character that separates two successive coordinates but
instead assume them to be the same as presented in the training data set.

The first part of each line, the part that defines identifier and timestamp of an instance is
easy to parse and can be done by inspecting the characters one by one.

For the points a simple parser has been written that reads one character at a time and is
controlled by a really simple finite state machine that skips over irrelevant data and cumulates
only the characters belonging to the definition of the coordinates. When the parser recognizes
the end of characters that belong to the coordinates, it stops parsing the line and delegates
parsing of the strings known to contain floating-point numbers to the default mechanism for
parsing floating point numbers provided by the core Java libraries.

For the regions a more flexible approach has been chosen because on the one hand the GML
format encountered here has a deeper XML structure with variable number of elements making
parsing more complicated and on the other hand because the execution time is not as crucial as
with the points simply because the amount of data is much smaller. Thus a specialized XML

1http://www.osgeo.org/geotools

6

POLYGON:1:1:<gml:Polygon srsName="EPSG:54004"
xmlns:gml="http://www.opengis.net/gml">

<gml:outerBoundaryIs>
<gml:LinearRing>

<gml:coordinates decimal="." cs="," ts=" ">
-1.31653586977661E7,3983548.08445849
-1.31653674099771E7,3983543.00364778
-1.31653536413005E7,3983539.38244563
....
-1.31619654875391E7,3977038.16221225
-1.31620352006778E7,3976815.51994722

</gml:coordinates>
</gml:LinearRing>

</gml:outerBoundaryIs>
<gml:innerBoundaryIs>

<gml:LinearRing>
<gml:coordinates decimal="." cs="," ts=" ">

-1.31422316898252E7,4006504.77674048
...
-1.31422316898252E7,4006504.77674048

</gml:coordinates>
</gml:LinearRing>

</gml:innerBoundaryIs>
</gml:Polygon>

Figure 5: Example of region input data

parser has been implemented on top of the relatively lightweight SAX-Parser API provided by
standard Java. This parser is nowhere near to implementing all possible ways of representing
regions in GML but implements just those parts of the format that occur within the training
dataset and again I assume that the data presented to the program will be of approximately
the same format. At least this implementation is not vulnerable for instance to whitespace
formatting issues and is able to cope with at least some of many possible ways of representing
regions in GML.

3.2 Preprocessing

As described in section 1.2 each region instance defined in the input file belongs to sequence
of regions that models the same object only at different points in time. Each instance has an
associated timestamp that defines when on the one hand this instance becomes valid and on
the other hand when its predecessor becomes invalid. This implies that instead of a single
timestamp each region instance really has an associated interval in which it is valid. Knowing
these intervals is crucial when evaluating predicates with regions and points because one of
the conditions of the predicate depends exactly on this interval: the timestamp of a point p
must be within the time-interval of a region instance r so that (p, r) is allowed to fulfill any
predicate.

Because these intervals are only implicitly given, they have to be derived from each sequence
of region instances. Fortunately this is neither complicated nor significantly time consuming.
We just have to gather all instances of the same region in a list, sort them by their timestamp
and may derive the time interval for each instance by looking up the instance and its successor.

7

For example consider the following four lines of input data that define four instances of the
region with identifier 7:

POLYGON:7:7:<gml:Polygon ... >
POLYGON:7:136355:<gml:Polygon ... >
POLYGON:7:161765:<gml:Polygon ... >
POLYGON:7:676995:<gml:Polygon ... >

We can derive that there are four intances of region number 7 being valid at the following
intervals:

• POLYGON:7:7: valid from 8 to 136355

• POLYGON:7:136355: valid from 136356 to 161765

• POLYGON:7:161765: valid from 161766 to 676995

• POLYGON:7:676995: valid from 676996 to ∞

In the remainder of the report I assume that this preprocessing has happened and that for
each region instance r the respective interval may be accessed via r.timestart and r.timeend.

3.3 Output

The output format is specified as a file containing one line for each pair of region and point
that matches the specified predicate with the line being formatted like this:

POINT-ID:POINT-TIMESTAMP:REGION-ID:REGION-TIMESTAMP

For instance the following lines are valid output data:

2:503:3:4
2:2498:3:4
4:3749:5:5
4:3749:8:8
4:4277:5:5
4:4277:8:8
...

The first line describes that the point with identifier 2 and timestamp 503 matched the
specified predicate together with the region instance with identifier 3 and timestamp 4.

Implementing the output operations did not incur any problems.

8

4 The Inside query

This section describes the algorithms implemented to solve the Inside query. Input for this
query is a set of regionsR and a set of points P. Each instance has a geometric component and
additionally each region instance has a temporal interval of validity and each point instance has
an associated timestamp. To find is the set of all pairs (p, r) ∈ P ×R for which geometrically
p Inside r is true and for which the point’s timestamp is contained within the region’s interval
of validity.

4.1 Simple solution

The simplest solution appears to be a loop over both regions and points and then to eval-
uate for each pair (region, point) whether it satisfies the spatiotemporal Inside-predicate.
Algorithm 1 shows pseudocode for this solution.

Algorithm 1 Calculating all pairs in P ×R that satisfy the spatiotemporal Inside predicate
1: for each point p ∈ P do
2: for each region r ∈ R do
3: if spatiotemporal-inside(p, r) then
4: output(p, r)
5: end if
6: end for
7: end for

8: function spatiotemporal-inside(p, r)
9: return p.time > r.timestart and p.time ≤ r.timeend and inside(pgeom, rgeom)

10: end function

4.2 Using spatial indexing

Spatial indexes such as R-Trees are data structures that store sets of spatial data and that
allow for efficient retrieval of intersecting data for rectangular and point queries. They may be
used to efficiently replace loops over large sets of data resulting in a typical pattern[RSV01] of
filter step and refinement step. Algorithms following this pattern use a query to the spatial
index to retrieve a set of candidates during the filter step, which will then, in the refinement
step, be examined in detail to find out whether a candidate really satisfies a predicate.

Indexing regions

Spatial indexes may be used to store the regions to increase query performance when compared
to a naive nested loop implementation once the number of regions becomes sufficiently high.
Algorithm 2 shows a straightforward transformation of algorithm 1 to an algorithm following
the filter-refinement pattern.

The second algorithm improves the first algorithm in that for each point, not every region is
considered for satisfaction of the predicate, but only a subset of all available regions. This
subset contains all those regions that are viable for the satisfaction of the predicate because
their bounding box overlaps the coordinate of the query point.

The running time of the query to the spatial index in line 6 is output sensitive and depends
on the number of candidates that will be found in the search tree. When we assume that
the regions are reasonably scattered across our area of interest we would expect the number
of regions to be reasonably small in each step so that each step should take only logarithmic
time in the number of regions contained within the data structure.

9

Algorithm 2 Calculate all pairs in P × R that satisfy the spatiotemporal Inside predicate
using a spatial index to efficiently store and retrieve regions
1: index← initialize spatial index
2: for each region r ∈ R do
3: index.insert(r)
4: end for
5: for each point p ∈ P do
6: C ← index.query(p)
7: for each region r ∈ C do
8: if spatiotemporal-inside(p, r) then
9: output(p, r)

10: end if
11: end for
12: end for

Indexing points

Similarly, instead of indexing regions, the points may be inserted into a spatial index, which
may then be queried for each region to build a set of candidate points. The resulting algorithm
for the Inside query is the same as algorithm 2 except that the semantics of points and regions
have to be swapped. As it takes O(n · log(n)) time to build an R-Tree and the number of
points is relatively high the overall running time with this approach has been found to be
suboptimal for the training data set.

4.3 The point in polygon problem

The strategies explained in the previous section allow us to find efficiently the set of all pairs of
points and regions (p, r) that are viable candidates for the satisfaction of the Inside predicate
because p is contained within the bounding box of r and that the temporal constraint is met
for (p, r) as well. What remains to find is an efficient implementation of the point in polygon
problem to decide whether a candidate pair (p, r) really belongs to the result set of a query.

The point in polygon problem is a well studied problem and [Hai94] gives an overview of the
algorithms that are efficient in practice. Most of the algorithms found here are based on one
of the following observations:

• Jordan Curve Theorem: when shooting a ray from the point in an arbitrary direction,
one may count the number of crossings of the ray with the polygon’s edges. If the
number of crossing edges counted is odd, the point is inside the polygon and outside if
that number is even.

• Winding numbers: they count the number of times a polygon boundary goes around the
point. It may be calculated by summating the signed angles of each segments endpoints
when viewed from the point. Depending on the definition of interior and exterior of the
polygon, the winding number tells us whether the point is inside or outside.

Only a subset of the algorithms described by Haines have been implemented and tested on
the training data set. One of the most promising and yet simple approaches is the so called
crossings test which has been implemented and is described in section 4.3.1.

I tried to improve the crossings test by reducing the number of edges that have to be inspected
for each query point. Those approaches can be found in sections 4.3.2, 4.3.3 and 4.3.4 respec-
tively. In an attempt to build an even more efficient implementation for the point in polygon
problem, another algorithm has been developed which can be found in section 4.3.5. This

10

algorithm builds a data structure that approximates the shape of the region with rectangles
of decreasing size such that in most cases queries may be answered by a simple tree lookup.

4.3.1 The crossings test

The crossings test is a ray shooting algorithm based on the Jordan Curve theorem first pre-
sented by Shimrat[Shi62]. The basic form of the crossings test is given in algorithm 3. The
algorithm consists of a loop over all segments of a polygon which will then be tested for inter-
section with a ray shot from the point along the x-axis to positive infinity. Each intersecting
segment updates a counter variable. The counter will be decremented if the segment crosses
the ray from above the ray to below the ray and will be incremented if it crosses from the
other direction. At the end of the loop, the point is classified as in the polygon if the counter
variable is not zero. Algorithm 3 gives pseudocode for the basic crossings test.

Algorithm 3 The basic crossings test
1: function crossingstest(P, x, y)
2: int crossings ← 0
3: for each segment s ∈ P do
4: if ray from (x, y) intersects s then
5: if s starts above the ray and ends below the ray then
6: decrement crossings
7: else
8: increment crossings
9: end if

10: end if
11: end for
12: return crossings != 0
13: end function

The crossings test may be expressed in real programming languages as described in algorithm
4 which is a quite similar to the presentation of the algorithm in [Hai94]. In the form shown
here segments will be skipped very fast if they are completely above or completely below the
ray. In the next step, we look at the x-coordinates and if the segment is completely to the
right of the point, we know that the ray intersects the segment. Similarly, if it is completely to
the left of the point, we know that the ray does not intersect the segment. Only if one vertex
of the segment is to the left of the point and the other is to the right, we need to calculate
the actual intersection with the ray.

4.3.2 An interval-tree based crossings test

In the basic crossings test, the y-coordinates of each segment’s endpoints are checked first and
may let us skip a segment quickly if an intersection with the ray is impossible. An intersection
of a segment s with a ray parallel to the x-axis and originating at point (px, py) is only possible
if py ≥ s.y1 ∧ py ≤ s.y2 (assuming that s.y1 ≤ s.y2). For many real world polygons we would
expect that many edges will be skipped because of the query point’s y-coordinate and only
very few being inspected further. This leads to the idea of inserting all segments of the
polygon into an interval tree with the endpoints of each interval being the y-coordinate of the
respective segment. Executing the crossings test then breaks down to querying that interval
tree based on the query point’s y-coordinate and then for each segment that we retrieve
execute the same statements as in algorithm 4 between lines 7 and 17. Algorithm 5 describes
this approach in pseudocode.

11

Algorithm 4 The basic crossings test, in concrete code
1: function crossingstest(P, x, y)
2: int crossings ← 0
3: for each segment s ∈ P do
4: boolean yflag0 ← (s.y1 ≥ y)
5: boolean yflag1 ← (s.y2 ≥ y)
6: if yflag0 != yflag1 then
7: boolean xflag0 ← (s.x1 ≥ x)
8: boolean xflag1 ← (s.x2 ≥ x)
9: if xflag0 == xflag1 then

10: if xflag0 then
11: crossings += (yflag0 ? -1 : 1)
12: end if
13: else
14: if (s.x2− (s.y2− y) · (s.x1− s.x2)/(s.y1− s.y2)) ≥ x then
15: crossings += (yflag0 ? -1 : 1)
16: end if
17: end if
18: end if
19: end for
20: return crossings != 0
21: end function

Algorithm 5 The crossings test with segments of a polygon stored in an interval tree
1: function intervaltree-crossingstest-prepare(P)
2: tree← initialize interval tree
3: for each segment s ∈ P do
4: tree.insert(s.y1, s.y2, s)
5: end for
6: end function

7: function intervaltree-crossingstest(x, y)
8: C ← tree.query(y)
9: for each segment s ∈ C do

10: if ray from p intersects s then
11: update crossings counter
12: end if
13: end for
14: end function

12

4.3.3 A bucket based crossings test

The crossings test runs in O(n) time for a polygon with n segments. The idea of the bucket
based crossings test is to reduce the running time of the algorithm by some constant factor
with minimal preprocessing overhead. To achieve this we create an array of buckets that
will be iterated instead of the segments in the main loop of the crossings test. Each bucket
contains a chain of segments of the original polygon and stores, as calculated during the
preprocessing phase, the minimum and maximum y-coordinate of all segments of that chain.
When iterating the buckets, we may now skip complete chains of segments after comparing
only the y-coordinate of the query point to the minimum and maximum y-value of a bucket.
Only if py ≥ bucket.ymin ∧ py ≤ bucket.ymax we take a look at each segment stored in the
respective bucket. Of course we may still end up looking at each segment of the polygon but
for certain polygons we can hope to skip a lot of segments faster than with the basic crossings
test.

4.3.4 A bins based crossings test

In a publicly available draft2 of [Hai94] Haines describes another optimized version of the
crossings test. This algorithm divides the bounding box of the polygon in m horizontal bins
of equal vertical size such that each bin represents an y-interval. In the preprocessing step
we find for each bin all segments that intersect the bin and store them in an appropriate
data structure along with the bin. Now to execute the crossings test for a given point, we
first determine in constant time, based on the point’s y-coordinate, the bin that contains all
segments that are relevant for the crossings test. Although we may still end up looking at
nearly all segments for degenerate polygons we would again assume that for many polygons
we would only look at a subset of the segments for most query points and that this subset is
significantly smaller than the number of segments of the whole polygon. This algorithm may
be improved to increase performance:

• by storing for each bin the x bounds so that a query point outside these bounds can be
classified as outside the polygon in constant time.

• by sorting the segments within each bin according to their decreasing maximal x-
coordinate so that we may stop iterating the segments once we have reached a segment
whose maximal x-coordinate is less than the point’s x-coordinate.

• by storing a flag for each segment whether it crosses the bin’s y-interval completely. For
such segments we may skip the initial check of the y-coordinates of the segment because
the point’s y-coordinate is then known to lie within the y-range of the segment.

4.3.5 The adaptive grid approximation method

I developed another algorithm that aims to approximate the shape of the polygon with rect-
angles of decreasing size such that these rectangles are completely contained in the interior of
the polygon. The idea is to insert those rectangles into a spatial index such as an R-Tree so
that for the biggest portion of the polygon a query to that spatial index will classify interior
points as in the polygon so that we are done quickly. Additionally the rectangles crossed by
the boundary of the polygon that have not been further partitioned are stored in the index
as well. If the query to the index returns such a rectangle we will have to do some more
calculations to decide whether the point is inside or outside. If the query to the index returns
an empty resultset, we know that the point is outside and we are done quickly as well.

2http://erich.realtimerendering.com/ptinpoly/

13

The algorithm that sets up the data structures works recursively on rectangles beginning with
the bounding box of the polygon. For a rectangle under consideration it will be tested whether
the rectangle is completely contained within the polygon. If this is the case, the rectangle is
stored as completely interior and the recursion stops. Otherwise the rectangle intersects the
boundary of the polygon. Unless the area of the rectangle does not fall below some threshold
the rectangle will be split along its longest side and the algorithm continues recursively for
both parts. If on the other hand the area of the rectangle does fall below that threshold, the
recursion ends and the rectangle will be stored as a boundary rectangle.

Figure 6: Data structure built for the boundary of Berlin

Figure 6 visualizes the resulting data structures built by the algorithm for the boundary of the
city of Berlin for decreasing values of the recursion threshold. Green cells represent rectangles
that are completely within the interior of the polygon and red cells represent boundary cells
where the recursion stopped at rectangles that still overlap with the boundary. Only the
intersection of the red rectangles with the boundary is shown in the figure.

When querying the data structure built up so far with a query point, three cases may occur:

1. The query returns a green rectangle. That means the point is inside the polygon and
we are done.

2. The query returns no rectangle at all. That means the point is outside the polygon and
we are done.

3. The query returns a red rectangle.

While in the first two cases we know how to classify the point, the third case requires a
fallback method to classify the point. One way to handle this case is to simply run the basic
crossings test or any other general purpose point in polygon test for those points. While this
definitely works we can do something more clever here. Observe that all boundary cells are of
equal size and thus partition the bounding box of the polygon into horizontal slices. Thus we

14

can use the bins based crossings test from section 4.3.4 as a fallback method and we would
not even have to compute the index of the bin from the y-coordinate of the point because
this may be precomputed and stored in the red rectangle. The bins based crossings test may
easily be generalized to also work with rays parallel to the y-axis instead of the x-axis and
also to work with rays shot towards either positive or negative infinity along the respective
axis. This gives us four different tests that we could use for each red rectangle and we can
easily compute during the preprocessing phase which one of those tests is the most promising
for the respective rectangle because we can count the number of segments that will have to
be considered for rays shot from within this rectangle in each of the four possible directions.

4.4 Performance evaluation

When run with the training data set, the basic crossings test nearly yields the best results.
On the one hand the algorithm does not require any preprocessing and on the other hand
the algorithm probably benefits from its simplicity: it consists of one loop with a few basic
arithmetic operations in its body. The Java virtual machine’s Just-in-time (JIT) compiler has
good chances optimizing that part of code early and efficiently.

Only two algorithms of those implemented achieve to improve the running time of the basic
crossings test. The first of those algorithms is the bucket based crossings test. This algorithm
has only a very simple preprocessing phase that takes O(n) time for a region with n segments.
Furthermore the algorithm itself is not much more complicated than the basic crossings test
and thus has similar prospects of getting optimized by the JIT compiler: it basically splits the
one loop over all segments into two nested loops of which hopefully many of the inner loops do
not get executed because of a simple conditional expression. Unfortunately the performance
gain for the training data is only at about 11% for the time spent in the algorithm and only
at about 2% in global program execution time including input, parsing and output.

The other algorithm that gains performance when compared to the basic crossings test is the
bins based crossings test. Its preprocessing phase is a little more expensive, especially if the
improvements described at the end of section 4.3.4 are being implemented. When querying
the data structures previously built during preprocessing, we need only constant time to
locate the bin in which the query point falls. Within that bin we essentially run the crossings
test with all segments contained in that bin. The algorithm may thus be optimized by the
JIT compiler similar to the basic crossings test and still for reasonably shaped regions, many
segments should be skipped. As with the bucket based crossings test the performance gain is
at about 10% of the time spent for point in polygon queries.

The remaining two approaches lead to longer execution times. They have both more expensive
preprocessing phases and worse prospects concerning JIT compiler optimization. For the
training data set the interval-tree based crossings test takes about 150% additional time
when compared to the basic crossings test and the adaptive-grid based approach needs even
additional 250%. It appears as if on the one hand the number of points is not high enough
to justify the expensive preprocessing phase. On the other hand the regions consist of only
about 150 to 300 segments which is in turn not enough for the strategies of the algorithms to
take effect.

To mitigate the effects of the preprocessing phase of the latter two algorithms I tried to im-
plement a hybrid approach, which first computes all candidates of points and regions grouped
by regions. Then for each region, depending on the number of candidate points, the hybrid
algorithm would choose between say a simple and a more advanced algorithm. Although
the idea of this approach was to combine the benefits of two algorithms to form a stronger
algorithm, the approach has its drawbacks which outweighed the benefits. On the one hand
precomputing and storing temporarily the list of candidates has its overhead which is yet not
too big to seem overly significant. On the other hand, when using two separate algorithms,

15

each algorithm gets used less often so that the JIT compiler will optimize it later. In sum
it appears that no performance gain could be achieved for the training data set with this
approach, but in the contrary performance dropped a little.

5 The Within-N query

This section describes the algorithms implemented to solve the Within-N query. Input for
this query is again a set of regions R and a set of points P. Each instance has a geometric
component and additionally each region instance has a temporal interval of validity and each
point instance has an associated timestamp. To find is the set of all pairs (p, r) ∈ P × R
for which geometrically distance(p, r) ≤ N is true and for which the point’s timestamp is
contained within the region’s interval of validity.

5.1 Simple solution

Similar to the Inside query, the simplest solution appears to be a loop over both regions and
points and then to evaluate for each pair (region, point) whether it satisfies the spatiotemporal
Within-N-predicate. Algorithm 6 shows pseudocode for this solution.

Algorithm 6 Calculating all pairs in P × R that satisfy the spatiotemporal Within-N
predicate
1: for each point p ∈ P do
2: for each region r ∈ R do
3: if spatiotemporal-within(p, r,N) then
4: output(p, r)
5: end if
6: end for
7: end for

8: function spatiotemporal-within(p, r,N)
9: return p.time > r.timestart and p.time ≤ r.timeend

10: and within-distance(pgeom, rgeom, N)
11: end function

5.2 Using spatial indexing

Again spatial indexes may be used to store the regions to increase query performance when
compared to a naive nested loop implementation once the number of regions becomes suffi-
ciently high. Algorithm 7 shows a transformation of algorithm 6 to an algorithm following
the filter-refinement pattern. The notable difference to algorithm 2 is that we cannot query
the spatial index with the query point itself, but instead need to query it with a rectangle
that ensures that the index will return all candidate regions whose distance to the query point
may be less or equal to N . Using a square with size 2 · N centered on the query point as a
query rectangle ensures this.

5.3 The within distance problem

The strategies explained above allow us to find efficiently the set of all pairs of points and
regions (p, r) that are viable candidates for the satisfaction of the Within-N predicate because
p is sufficiently near to the the bounding box of r and that the temporal constraint is met

16

Algorithm 7 Calculate all pairs in P×R that satisfy the spatiotemporal Within-N predicate
using a spatial index to efficiently store and retrieve regions
1: index← initialize spatial index
2: for each region r ∈ R do
3: index.insert(r)
4: end for
5: for each point p ∈ P do
6: q ← square around p with size 2 ·N
7: C ← index.query(q)
8: for each region r ∈ C do
9: if within-distance(p, r,N) then

10: output(p, r)
11: end if
12: end for
13: end for

for (p, r) as well. What remains to find is an efficient implementation of the within distance
problem to decide whether a candidate pair (p, r) really belongs to the result set of a query.

A point p is considered within distance N of a polygon P if it is either inside P or if the
distance from p to the boundary of P , denoted by ∂P , is less or equal than N . Thus there
are two parts of the problem that may be solved separately. On the one hand we need to
determine whether the point is inside a polygon. This problem has already been considered
in section 4.3. On the other hand we need to determine whether there is any segment of
P whose distance to p is less or equal to N . I call this problem the within-distance-to-
boundary-problem and algorithms to solve it will be discussed in the following subsections.

5.3.1 Simple solutions

To solve the within-distance-to-boundary-problem, we can iterate over the segments
of the polygon and calculate the distance from the point to each segment. Once we find a
segment whose distance to p is less or equal to N we may stop the iteration and know that
distance(p, P) ≤ N . If on the other hand we do not find such a segment, we know that
distance(p, ∂P) > N and that whether distance(p, P) ≤ N is true depends on the point in
polygon predicate. Algorithm 8 shows pseudocode for this.

Algorithm 8 A simple algorithm to determine whether distance(p, ∂P) ≤ N

1: function within-distance-to-boundary(P, x, y,N)
2: for each segment s ∈ P do
3: d← distance(p, s)
4: if d ≤ N then
5: return true
6: end if
7: end for
8: return false
9: end function

Algorithm 9 shows how algorithm 8 may be implemented using squared distances to avoid
square root computations. The algorithm distinguishes three cases concerning the projection
of the point onto the line going through a segment. Depending on the location of the projection
of the point either the distance to the startpoint, to the endpoint or to the nearest point on
the segment, i.e. to the projection will be calculated.

Now implementations of inside and within-distance-to-boundary can be combined to

17

Algorithm 9 A simple algorithm to determine whether distance(p, ∂P) ≤ N

1: function within-distance-to-boundary(P, x, y,N)
2: distance2 ← N ·N
3: for each segment s ∈ P do
4: squaredLen← squaredDistance(s.x1, s.y1, s.x2, s.y2)
5: if squaredLen == 0 then
6: d← squaredDistance(x, y, s.x1, s.y1)
7: if d < distance2 then
8: return true
9: end if

10: end if
11: t← ((x− s.x1) · (s.x2− s.x1) + (y − s.y1) · (s.y2− s.y1))/squaredLen
12: if t < 0 then
13: d← squaredDistance(x, y, s.x1, s.y1)
14: if d < distance2 then
15: return true
16: end if
17: else if t > 1 then
18: d← squaredDistance(x, y, s.x2, s.y2)
19: if d < distance2 then
20: return true
21: end if
22: else
23: tx← s.x1 + t · (s.x2− s.x1)
24: ty ← s.y1 + t · (s.y2− s.y1)
25: d← squaredDistance(x, y, tx, ty)
26: if d < distance2 then
27: return true
28: end if
29: end if
30: end for
31: return false
32: end function

18

solve the within-distance-predicate. This can be done by first executing inside and then,
if the result is not true execute within-distance-to-boundary as shown in algorithm 10.
Alternatively we can also execute both subprograms in swapped order as shown in algorithm
11. At least on the training data the first approach has been found to be more efficient.

Algorithm 10 Determining whether distance(p, P) ≤ N

1: function within-distance(P, x, y,N)
2: if inside(P, x, y) then
3: return true
4: end if
5: return within-distance-to-boundary(P, x, y)
6: end function

Algorithm 11 Determining whether distance(p, P) ≤ N

1: function within-distance(P, x, y,N)
2: if within-distance-to-boundary(P, x, y) then
3: return true
4: end if
5: return inside(P, x, y)
6: end function

5.3.2 Using spatial indexing for segments

Similar to the approach used in section 5.2 I tried to use spatial indexing to speed up the
execution of the within-distance-to-boundary procedure. In a preprocessing phase we
insert all segments of a polygon P into a spatial index. When testing the distance of segments
of P to a query point p we can exclude all those segments whose bounding box is so far away
from p that it is impossible for the segment to be within the specified distance. As in section
5.2 we cannot query the index with the query point itself but need to use a square of size
2 ·N as a query rectangle to be sure that all viable segments of P will be returned from the
index. For each segment found in the spatial index, we perform the same steps as seen in the
previous subsection, resulting in a semantically equivalent algorithm.

Although this method could in principle lead to reduced execution time, it does not for the
training data set. It appears that the number of segments of the polygons is too low for the
algorithm to benefit from this technique. Although the execution times with this technique
are longer than with the simple approach (but only a little bit longer) I assume that for
polygons with a much higher number of segments this technique would be beneficial.

5.4 Performance evaluation

For the within distance problem the fastest algorithm implemented is the simple solution
described in section 5.3.1 which first executes the crossings test to determine whether the
query point is within the region and if that test returns false determines whether the point is
sufficiently near to the boundary of the region by iterating its edges. Any attempt to reorder
parts of that algorithm, i.e. swapping point in polygon test and within distance of boundary
test, or building an interleaved version that combines both loops over all edges into a single
loop led to longer execution times in total.

Building a spatial index for quick access to edges of regions did also not have a positive effect
but instead the running time for the relevant part of the program became about 20% longer.
Probably the number of edges of the regions is with 150 to 300 not high enough for the
indexing to have positive effects.

19

6 Outlook

The point in polygon test developed in section 4.3.5 could be studied in more detail: on the
one hand its correctness should be proven and its running time could be analyzed for different
types of polygons and for polygons of different sizes. On the other hand the algorithm requires
as input a parameter to determine the granularity of the polygon decomposition. It is hitherto
unclear how to choose this parameter wisely depending on the characteristics of the polygon
or the expected number of queries that are going to be performed. Also there are many ideas
for improvements of construction of the data structures as well as more efficient solutions for
the fallback point in polygon strategy for points that fall into the region near the boundary
where no approximation with rectangles has been created during preprocessing.

Haines[Hai94] discusses more point in polygon strategies than those considered in this report.
One of those is an approach that is based on the triangle fan test which originally is a point in
polygon test for convex polygons. There an extra vertex is chosen that lies inside the polygon
which is used to construct a triangle for each edge of the polygon. Now a binary search on the
start and end angles of the triangles lets us find quickly the only triangle that a query point
may possibly lie within with which we can determine whether the query point is inside the
polygon. This method may be generalized to work with general polygons as well, where the
number of triangles overlapping a query point has to be counted instead of locating a unique
triangle. It would be nice to see this algorithm’s performance in practice.

Another strategy discussed in [Hai94] is a method that overlays the bounding box of the
polygon with a regular grid and precomputes the inside predicate for a corner of each cell
in the grid. Now the cell that a query point falls within can be computed in constant time
similar to the bins based approach, where the bin can be located in constant time. Once the
grid cell is located we shoot a ray from the query point, but only check for intersections with
edges of the polygon that in turn intersect with the grid cell where the set of these edges have
been precomputed for each cell during preprocessing. The drawback of this approach that it
is relatively space-consuming, depending on the granularity of the grid. It would be nice to
evaluate the algorithm’s performance when compared to the adaptive grid method and also
to compare the space complexity of both methods.

References

[Hai94] Eric Haines. Graphics gems iv. chapter Point in polygon strategies, pages 24–46.
Academic Press Professional, Inc., San Diego, CA, USA, 1994.

[RSV01] Philippe Rigaux, Michel Scholl, and Agnes Voisard. Spatial databases: with applica-
tion to GIS. Morgan Kaufmann, 2001.

[Shi62] M. Shimrat. Algorithm 112: Position of point relative to polygon. Communications
of the ACM, 5(8):434, August 1962.

20

	Introduction
	Outline
	Definitions
	Problem definition

	Training data
	Regions
	Points

	Preliminaries
	Input
	Preprocessing
	Output

	The Inside query
	Simple solution
	Using spatial indexing
	The point in polygon problem
	The crossings test
	An interval-tree based crossings test
	A bucket based crossings test
	A bins based crossings test
	The adaptive grid approximation method

	Performance evaluation

	The Within-N query
	Simple solution
	Using spatial indexing
	The within distance problem
	Simple solutions
	Using spatial indexing for segments

	Performance evaluation

	Outlook

