Discrete Geometry III

Homework # 6 — due February 10th

Please do all the problems. You can get extra credit by solving the bonus problems. **State** who wrote up the solution. You have to hand in the solutions **before** the recitation on Wednesday.

Exercise 1. Let $U = (u_1, \ldots, u_k)$ be a k-frame and $P \subset \mathbb{R}^d$ a polytope.

i) Show that for $\varepsilon > 0$ sufficiently small

$$P^U := (P^{u_1})^{u_2} \cdots)^{u_k} = P^{u_\varepsilon},$$

where $u_{\varepsilon} := u_1 + \varepsilon u_2 + \cdots + \varepsilon^{k-1} u_k$.

ii) Let U' be a frame such that $P^U = P^{U'}$. Show that

$$F_U(f) = F_{U'}(f)$$

for all
$$f \in \Pi(P)$$
.

(10 points)

Exercise 2. Let $Q \subset \mathbb{R}^d$ be a polytope.

- i) Show that there is a simple polytope P such that $Q \preceq P$. [Hint: Represent $Q = \{x : Ax \leq b\}$.]
- ii) Show that there is always a zonotope Z (i.e. Minkowski sum of segments) such that $Q \leq Z$. [Hint: What are the edges of a zonotope?]

(10 points)

Exercise 3. Consider the following six elements f_1, \ldots, f_6 in the polytope algebra Π^2 (dashed edges and empty circles are used to indicate a half-open boundary).

$$f_{1}=6\begin{bmatrix} 1 & f_{3}=5\begin{bmatrix} 1 & f_{3}=2 \end{bmatrix} + 2\begin{bmatrix} 1 & f_{5}=3\begin{bmatrix} 1 & f_{5}=3 \end{bmatrix} + \begin{bmatrix} 1 & f_{5}=$$

Here, the small cube represents the unit square $[0, 1]^2$.

- i) Find a polygon P such that $f_i \in \Pi(P)$ for $1 \le i \le 6$.
- ii) For each pair $1 \le i < j \le 6$, decide whether $f_i = f_j$. You have to argue your answer but you don't have to write the full computation.

(10 points)

Exercise 4. Let $C_n^{\triangle} = \operatorname{conv}(\pm e_1, \pm e_2, \pm e_n)$ be the *n*-dimensional cross-polytope. For every $k = 0, 1, \ldots, n$, determine the dimension of $\Omega_k(C_n^{\triangle})$.

(10 points)