Discrete Geometry III

Homework \# 6 - due February 10th

Please do all the problems. You can get extra credit by solving the bonus problems. State who wrote up the solution. You have to hand in the solutions before the recitation on Wednesday.

Exercise 1. Let $U=\left(u_{1}, \ldots, u_{k}\right)$ be a k-frame and $P \subset \mathbb{R}^{d}$ a polytope.
i) Show that for $\varepsilon>0$ sufficiently small

$$
\left.P^{U}:=\left(P^{u_{1}}\right)^{u_{2}} \cdots\right)^{u_{k}}=P^{u_{\varepsilon}}
$$

where $u_{\varepsilon}:=u_{1}+\varepsilon u_{2}+\cdots+\varepsilon^{k-1} u_{k}$.
ii) Let U^{\prime} be a frame such that $P^{U}=P^{U^{\prime}}$. Show that

$$
\mathrm{F}_{U}(f)=\mathrm{F}_{U^{\prime}}(f)
$$

for all $f \in \Pi(P)$.
(10 points)
Exercise 2. Let $Q \subset \mathbb{R}^{d}$ be a polytope.
i) Show that there is a simple polytope P such that $Q \preceq P$. [Hint: Represent $Q=\{x: A x \leq b\}$.]
ii) Show that there is always a zonotope Z (i.e. Minkowski sum of segments) such that $Q \preceq Z$. [Hint: What are the edges of a zonotope?]
(10 points)
Exercise 3. Consider the following six elements f_{1}, \ldots, f_{6} in the polytope algebra Π^{2} (dashed edges and empty circles are used to indicate a half-open boundary).
$f_{1}=6\left[\begin{array}{c}\cdots \\ \cdots \cdots \\ 0 \\ 0\end{array}\right]$
$f_{3}=5\left[\begin{array}{c}0 \\ 0 \\ 0\end{array}\right]+2\left[\begin{array}{c}0 \\ 0\end{array}\right]$
$f_{5}=3\left[\begin{array}{lll}\square & \ddots & 0\end{array}\right]+\left[\begin{array}{l}0 \\ 0\end{array}\right]-[\cdots]$
$f_{2}=7\left[\begin{array}{c}\cdots \\ \square O\end{array}\right]-\left[\begin{array}{ll}0\end{array}\right]$
$f_{4}=2[0]$

Here, the small cube represents the unit square $[0,1]^{2}$.
i) Find a polygon P such that $f_{i} \in \Pi(P)$ for $1 \leq i \leq 6$.
ii) For each pair $1 \leq i<j \leq 6$, decide whether $f_{i}=f_{j}$. You have to argue your answer but you don't have to write the full computation.
(10 points)
Exercise 4. Let $C_{n}^{\triangle}=\operatorname{conv}\left(\pm e_{1}, \pm e_{2}, \pm e_{n}\right)$ be the n-dimensional cross-polytope. For every $k=0,1, \ldots, n$, determine the dimension of $\Omega_{k}\left(C_{n}^{\triangle}\right)$.

