Discrete Geometry III

Homework # 5 — due January 20th

Please do all the problems. You can get extra credit by solving the bonus problems. **State** who wrote up the solution. You have to hand in the solutions **before** the recitation on Wednesday.

Exercise 1. For $d \ge 0$ define

 $\mathsf{D}_d := \{ x \in \mathbb{R}^d : 0 \le x_1 \le x_2 \le \dots \le x_d \le 1 \}.$

i) Show that D_d is a *d*-simplex and determine the vertices of nD_d for $n \in \mathbb{N}$. There is a canonical *finite* subdivision \mathcal{K}_d of \mathbb{R}^d whose maximal cells are the cubes $\mathbf{p} + [0, 1]^d$ with $\mathbf{p} \in \mathbb{Z}^d$.

- ii) Argue that for any n > 0, $\mathcal{K}_d \cap n\mathsf{D}_d := \{F \cap n\mathsf{D}_d : F \in \mathcal{K}_d\}$ induces a subdivision of $n\mathsf{D}_d$.
- iii) Show that every cell of $\mathcal{K}_d \cap n\mathsf{D}_d$ is affinely isomorphic to

$$\mathsf{D}_{s_1} \times \mathsf{D}_{s_2} \times \cdots \times \mathsf{D}_{s_n},$$

for some $0 \le s_1 \le s_2 \le \cdots \le s_n$ with $s_1 + \cdots + s_n \le d$. [Hint: You only have to do this for $s_1 + \cdots + s_n = d$ (why?).]

iv) For $s = (0 \le s_1 \le \cdots \le s_n)$ with $s_1 + \cdots + s_n = d$ count the number of cells of this type. In particular infer that there are exactly n cells isomorphic to Δ_d .

(10 points)

Exercise 2. For d = 1, show that any $f \in \Pi^1$ can be written as

$$f = \alpha [0] + \sigma [[0, r)],$$

where $\alpha \in \mathbb{Z}$, $\sigma = \pm 1$, and $r \in \mathbb{R}_{>0}$.

(10 points)

Exercise 3. i) Show that $f \in \Pi$ is nilpotent if and only if $f \in \Pi_+$. (This means that Π_+ is the *nilradical* of Π_-)

- ii) Show that $\llbracket P \rrbracket$ is invertible in Π and give a formula for $\llbracket P \rrbracket^{-1}$.
- iii) Show that $f \in \Pi$ is invertible if and only if $\chi(f) = \pm 1$.

(10 points)

Exercise 4. Let m > 0 and P, P_1, \ldots, P_r polytopes such that $P = P_1 + \cdots + P_r$. Assume that for every i there is an element $h_i \in \Pi$ such that $mh_i = \llbracket P_i \rrbracket - 1$. Show that there is $h \in \Pi$ such that $mh = \llbracket P \rrbracket - 1$. Can you give an explicit formula?

(10 points)