Discrete Geometry III

Homework \# 5 - due January 20th
Please do all the problems. You can get extra credit by solving the bonus problems. State who wrote up the solution. You have to hand in the solutions before the recitation on Wednesday.

Exercise 1. For $d \geq 0$ define

$$
\mathrm{D}_{d}:=\left\{x \in \mathbb{R}^{d}: 0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{d} \leq 1\right\}
$$

i) Show that D_{d} is a d-simplex and determine the vertices of $n \mathrm{D}_{d}$ for $n \in \mathbb{N}$. There is a canonical finite subdivision \mathcal{K}_{d} of \mathbb{R}^{d} whose maximal cells are the cubes $\mathbf{p}+[0,1]^{d}$ with $\mathbf{p} \in \mathbb{Z}^{d}$.
ii) Argue that for any $n>0, \mathcal{K}_{d} \cap n \mathrm{D}_{d}:=\left\{F \cap n \mathrm{D}_{d}: F \in \mathcal{K}_{d}\right\}$ induces a subdivision of $n \mathrm{D}_{d}$.
iii) Show that every cell of $\mathcal{K}_{d} \cap n \mathrm{D}_{d}$ is affinely isomorphic to

$$
\mathrm{D}_{s_{1}} \times \mathrm{D}_{s_{2}} \times \cdots \times \mathrm{D}_{s_{n}}
$$

for some $0 \leq s_{1} \leq s_{2} \leq \cdots \leq s_{n}$ with $s_{1}+\cdots+s_{n} \leq d$. [Hint: You only have to do this for $s_{1}+\cdots+s_{n}=d$ (why?).]
iv) For $s=\left(0 \leq s_{1} \leq \cdots \leq s_{n}\right)$ with $s_{1}+\cdots+s_{n}=d$ count the number of cells of this type. In particular infer that there are exactly n cells isomorphic to Δ_{d}.
(10 points)
Exercise 2. For $d=1$, show that any $f \in \Pi^{1}$ can be written as

$$
f=\alpha \llbracket 0 \rrbracket+\sigma \llbracket[0, r) \rrbracket,
$$

where $\alpha \in \mathbb{Z}, \sigma= \pm 1$, and $r \in \mathbb{R}_{>0}$.
(10 points)
Exercise 3. i) Show that $f \in \Pi$ is nilpotent if and only if $f \in \Pi_{+}$.
(This means that Π_{+}is the nilradical of Π.)
ii) Show that $\llbracket P \rrbracket$ is invertible in Π and give a formula for $\llbracket P \rrbracket^{-1}$.
iii) Show that $f \in \Pi$ is invertible if and only if $\chi(f)= \pm 1$.
(10 points)
Exercise 4. Let $m>0$ and P, P_{1}, \ldots, P_{r} polytopes such that $P=P_{1}+\cdots+P_{r}$. Assume that for every i there is an element $h_{i} \in \Pi$ such that $m h_{i}=\llbracket P_{i} \rrbracket-1$. Show that there is $h \in \Pi$ such that $m h=\llbracket P \rrbracket-1$. Can you give an explicit formula?

