## Discrete Geometry III

## Homework \# 4 - due December 16th

Please do all the problems. $\mathbf{2 0}$ points on every ( 1 week) homework sheet. You can get extra credit by solving the bonus problems. State who wrote up the solution. You have to hand in the solutions before the recitation on Wednesday.

Exercise 1. For $c \in \mathbb{R}^{d} \backslash\{0\}$, consider the map $F_{c}: \mathcal{P}_{d} \rightarrow \mathbf{S} \mathcal{P}_{d}$ defined by $F_{c}(P):=\left[P^{c}\right]$, where $P^{c}$ is the face in direction $c$. Show that $F_{c}$ is a valuation.
(10 points)
Exercise 2. Recall that function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is piecewise linear (PL, for short) if there is a complete fan $\mathcal{F}$ with maximal cells $F_{1}, \ldots, F_{m}$ and linear functions $\ell_{1}, \ldots, \ell_{m}$ such that $f(x)=\ell_{i}(x)$ for all $x \in F_{i}$.
i) Let $f_{1}, \ldots, f_{r}$ be linear function and define

$$
f(x):=\max \left\{f_{i}(x): i=1, \ldots, r\right\} .
$$

Show that $f$ is a piecewise linear function.
ii) Show that a PL function $f$ is convex if and only if it is of the form i).
iii) Show that a function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the support function of a polytope if and only if $h$ is subadditive and piecewise linear.
(10 points)
Exercise 3. i) For $A=\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathbb{R}^{d}$ define

$$
h_{A}(x)=\sum_{i=1}^{m}\left|a_{i}^{t} x\right|
$$

Show that $h_{A}(x)$ is a piecewise linear function. In fact, $h$ is the support function of a polytope. [Hint: Start with $m=1$ and use Minkowski sums.]
ii) Show that for a piecewise linear function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ there are polytopes $P, Q \subset \mathbb{R}^{d}$ such that $h=h_{P}-h_{Q}$. [Hints: You can assume that the underlying fan $\mathcal{F}$ is induced by a hyperplane arrangement. Argue that there is a PL function $h_{A}$ that $h+M \cdot h_{A}$ is convex for some $M \gg 0$. Remember that convexity of a function is a 2 -dimensional notion.]
(10 points)
Exercise 4. Let $P \in \mathcal{P}_{d}$ and let $u \in \mathbb{R}^{d} \backslash\{0\}$. The envelope of $P$ with respect to $u$ is

$$
E_{u} P:=\{x \in P: x+\delta u \notin P \text { for all } \delta>0\}
$$

Prove that the homomorphism $\phi_{u}: \mathbf{S} \mathcal{P}_{d} \rightarrow \mathbf{S} \mathcal{P}_{d}$ given on generators by $\phi_{u}([P]):=\left[E_{u} P\right]$ is well-defined.
[Hint: For $f \in \mathbf{S} \mathcal{P}_{d}$, consider $\left.\lim _{\delta \rightarrow 0} f \star[(-\delta u, 0]].\right]$

