Discrete Geometry III

Homework # 3 — due November 25th

Please mark **four** of your solutions. Only these will be graded. The problems marked with a are **mandatory**. You can earn **20 points** on every (1 week) homework sheet. You can get extra credit by solving the bonus problems. **State** who wrote up the solution. You have to hand in the solutions **before** the recitation on Wednesday.

Exercise 1. \square Let $P_1, P_2, Q \in \mathcal{P}_d$ be polytopes.

i) Show that

 $(P_1 \cup P_2) + Q = (P_1 + Q) \cup (P_2 + Q)$

where '+' is the Minkowski sum.

ii) Assume that $P_1 \cup P_2$ is convex. Show that

 $(P_1 \cap P_2) + Q = (P_1 + Q) \cap (P_2 + Q).$

- iii) For fixed $Q \in \mathcal{P}_d$, show that the map $\phi_{+Q} : \mathcal{P}_d \to \mathbf{S}\mathcal{P}_d$ given by $\phi_{+Q}(P) := [P+Q]$ is a valuation and yields a linear map $\hat{\phi}_{+Q} : \mathbf{S}\mathcal{P}_d \to \mathbf{S}\mathcal{P}_d$.
- iv) Let $\operatorname{End}(\mathbf{S}\mathcal{P}_d)$ be the abelian group of linear maps $\mathbf{S}\mathcal{P}_d \to \mathbf{S}\mathcal{P}_d$. Show that the map $\Phi : \mathcal{P} \to \operatorname{End}(\mathbf{S}\mathcal{P}_d)$ given by $\Phi(Q) := \hat{\phi}_{+Q}$ is a valuation and yields $\hat{\Phi} : \mathbf{S}\mathcal{P}_d \to \operatorname{End}(\mathbf{S}\mathcal{P}_d)$.
- v) Infer that for $f, g \in \mathbf{S}\mathcal{P}_d$

$$f \star g = \tilde{\Phi}(f)(g)$$

is the product that we constructed in class.

(10 points)

Exercise 2. Let $Q \subset \mathbb{R}^d$ be a fixed polytope and consider the map $\Upsilon_Q : \mathcal{P}_d \to \mathbf{S}\mathcal{P}_d$ defined by $\Upsilon_Q(P) := [\operatorname{conv}(P \cup Q)]$ for $P \in \mathcal{P}_d \setminus \{\emptyset\}$ and $\Upsilon_Q(\emptyset) := 0$.

i) Show that Υ_Q is a valuation.

In particular Υ_Q extends to a homomorphism $\Upsilon_Q : \mathbf{S}\mathcal{P}_d \to \mathbf{S}\mathcal{P}_d$.

The association $Q \mapsto \Upsilon_Q$ is a map from polytopes $Q \in \mathcal{P}_d$ to homomorphisms $\Upsilon_Q : \mathbf{S}\mathcal{P}_d \to \mathbf{S}\mathcal{P}_d$. As before, let $\operatorname{End}(\mathbf{S}\mathcal{P}_d)$ be the abelian group of linear maps $\mathbf{S}\mathcal{P}_d \to \mathbf{S}\mathcal{P}_d$.

- ii) Show that the map $Q\mapsto \Upsilon_Q$ is a valuation.
- iii) Infer that there is a product $\vee : \mathbf{SP}_d \times \mathbf{SP}_d \to \mathbf{SP}_d$ such that

$$[P] \lor [Q] = [\operatorname{conv}(P \cup Q)]$$

(10 points)

Exercise 3. Let $e_1, \ldots, e_d \in \mathbb{R}^d$ be the standard basis and $\mathbf{1} = \sum_{i=1}^d e_i$.

i) Show that for d = 2

 $\left[[0, e_1) \right] \star \left[[0, e_2) \right] \star \left[[0, -\mathbf{1}) \right] = 0.$

[Hint: The product is associative!]

ii) Show that this holds for all d, that is,

$$\left[\left[0, e_1 \right) \right] \star \cdots \star \left[\left[0, e_d \right) \right] \star \left[\left[0, -1 \right) \right] = 0.$$

iii) (Bonus) A collection of vectors u_1, \ldots, u_k is positively dependent if there are $\lambda_1, \ldots, \lambda_k \ge 0$ not all zero such that $\lambda_1 u_1 + \cdots + \lambda_k u_k = 0$. Show that for positively dependent u_1, \ldots, u_k

$$\left[\left[0, u_1 \right) \right] \star \cdots \star \left[\left[0, u_{k-1} \right) \right] \star \left[\left[0, u_k \right) \right] = 0.$$

(10+3 points)

Exercise 4. An element $f \in \mathbf{SP}_d$ is an **idempotent** if $f \star f = f$.

- i) Let $S\mathcal{P}_d^0 \subseteq S\mathcal{P}_d$ be those polytopal simple functions such that $f^{-1}(k)$ is a finite for all $k \neq 0$. Show that if $f \in S\mathcal{P}_1^0$ is idempotent, then f = [0] or f = 0.
- ii) Show that f = [0] are the the only non-zero idempotents in $S\mathcal{P}_d$. [Hint: Remember that the ring maps $h(f, \cdot)$ distinguish.]
- iii) An element $f \in \mathbf{SP}_d$ is **nilpotent** if $f^k = 0$ for some $k \ge 1$. What are the nilpotent elements of \mathbf{SP}_d ?

(10 points)