Discrete Geometry III

Homework \# 3 - due November 25th

Please mark four of your solutions. Only these will be graded. The problems marked with a 四 are mandatory. You can earn 20 points on every (1 week) homework sheet. You can get extra credit by solving the bonus problems. State who wrote up the solution. You have to hand in the solutions before the recitation on Wednesday.

Exercise 1. 四 Let $P_{1}, P_{2}, Q \in \mathcal{P}_{d}$ be polytopes.
i) Show that

$$
\left(P_{1} \cup P_{2}\right)+Q=\left(P_{1}+Q\right) \cup\left(P_{2}+Q\right)
$$

where ' + ' is the Minkowski sum.
ii) Assume that $P_{1} \cup P_{2}$ is convex. Show that

$$
\left(P_{1} \cap P_{2}\right)+Q=\left(P_{1}+Q\right) \cap\left(P_{2}+Q\right)
$$

iii) For fixed $Q \in \mathcal{P}_{d}$, show that the map $\phi_{+Q}: \mathcal{P}_{d} \rightarrow \mathbf{S} \mathcal{P}_{d}$ given by $\phi_{+Q}(P):=$ $[P+Q]$ is a valuation and yields a linear map $\hat{\phi}_{+Q}: \mathbf{S} \mathcal{P}_{d} \rightarrow \mathbf{S} \mathcal{P}_{d}$.
iv) Let $\operatorname{End}\left(\mathbf{S} \mathcal{P}_{d}\right)$ be the abelian group of linear maps $\mathbf{S} \mathcal{P}_{d} \rightarrow \mathbf{S} \mathcal{P}_{d}$. Show that the map $\Phi: \mathcal{P} \rightarrow \operatorname{End}\left(\mathbf{S} \mathcal{P}_{d}\right)$ given by $\Phi(Q):=\hat{\phi}_{+Q}$ is a valuation and yields $\hat{\Phi}: \mathbf{S} \mathcal{P}_{d} \rightarrow \operatorname{End}\left(\mathbf{S} \mathcal{P}_{d}\right)$.
v) Infer that for $f, g \in \mathbf{S} \mathcal{P}_{d}$

$$
f \star g=\hat{\Phi}(f)(g)
$$

is the product that we constructed in class.
(10 points)

Exercise 2. Let $Q \subset \mathbb{R}^{d}$ be a fixed polytope and consider the map $\Upsilon_{Q}: \mathcal{P}_{d} \rightarrow \mathbf{S} \mathcal{P}_{d}$ defined by $\Upsilon_{Q}(P):=[\operatorname{conv}(P \cup Q)]$ for $P \in \mathcal{P}_{d} \backslash\{\emptyset\}$ and $\Upsilon_{Q}(\emptyset):=0$.
i) Show that Υ_{Q} is a valuation.

In particular Υ_{Q} extends to a homomorphism $\Upsilon_{Q}: \mathbf{S} \mathcal{P}_{d} \rightarrow \mathbf{S} \mathcal{P}_{d}$.
The association $Q \mapsto \Upsilon_{Q}$ is a map from polytopes $Q \in \mathcal{P}_{d}$ to homomorphisms $\Upsilon_{Q}: \mathbf{S} \mathcal{P}_{d} \rightarrow \mathbf{S} \mathcal{P}_{d}$. As before, let $\operatorname{End}\left(\mathbf{S} \mathcal{P}_{d}\right)$ be the abelian group of linear maps $\mathbf{S} \mathcal{P}_{d} \rightarrow \mathbf{S} \mathcal{P}_{d}$.
ii) Show that the map $Q \mapsto \Upsilon_{Q}$ is a valuation.
iii) Infer that there is a product $\vee: \mathbf{S} \mathcal{P}_{d} \times \mathbf{S} \mathcal{P}_{d} \rightarrow \mathbf{S} \mathcal{P}_{d}$ such that

$$
[P] \vee[Q]=[\operatorname{conv}(P \cup Q)]
$$

Exercise 3. Let $e_{1}, \ldots, e_{d} \in \mathbb{R}^{d}$ be the standard basis and $\mathbf{1}=\sum_{i=1}^{d} e_{i}$.
i) Show that for $d=2$

$$
\left[\left[0, e_{1}\right)\right] \star\left[\left[0, e_{2}\right)\right] \star[[0,-\mathbf{1})]=0 .
$$

[Hint: The product is associative!]
ii) Show that this holds for all d, that is,

$$
\left[\left[0, e_{1}\right)\right] \star \cdots \star\left[\left[0, e_{d}\right)\right] \star[[0,-\mathbf{1})]=0
$$

iii) (Bonus) A collection of vectors u_{1}, \ldots, u_{k} is positively dependent if there are $\lambda_{1}, \ldots, \lambda_{k} \geq 0$ not all zero such that $\lambda_{1} u_{1}+\cdots+\lambda_{k} u_{k}=0$. Show that for positively dependent u_{1}, \ldots, u_{k}

$$
\left[\left[0, u_{1}\right)\right] \star \cdots \star\left[\left[0, u_{k-1}\right)\right] \star\left[\left[0, u_{k}\right)\right]=0 .
$$

(10+3 points)
Exercise 4. An element $f \in \mathbf{S} \mathcal{P}_{d}$ is an idempotent if $f \star f=f$.
i) Let $\mathbf{S} \mathcal{P}_{d}^{0} \subseteq \mathbf{S} \mathcal{P}_{d}$ be those polytopal simple functions such that $f^{-1}(k)$ is a finite for all $k \neq 0$. Show that if $f \in \mathbf{S} \mathcal{P}_{1}^{0}$ is idempotent, then $f=[0]$ or $f=0$.
ii) Show that $f=[0]$ are the the only non-zero idempotents in $\mathbf{S} \mathcal{P}_{d}$. [Hint: Remember that the ring maps $h(f, \cdot)$ distinguish.]
iii) An element $f \in \mathbf{S} \mathcal{P}_{d}$ is nilpotent if $f^{k}=0$ for some $k \geq 1$. What are the nilpotent elements of $\mathbf{S} \mathcal{P}_{d}$?

