Discrete Geometry III

Homework \# 2 - due November 11th

You can write your solution to the homeworks in pairs. Please try to solve all problems. This will deepen the understanding of the material covered in the lectures. You are welcome to ask (in person or email) for additional hints for any exercise. Please think about the exercise before you ask. Please mark four of your solutions. Only these will be graded. The problems marked with a 四 are mandatory. You can earn 20 points on every (1 week) homework sheet. You can get extra credit by solving the bonus problems. State who wrote up the solution. You have to hand in the solutions before the recitation on Wednesday.

Exercise 1. 四 A total order on \mathbb{N}^{n} is a partial order relation \preceq such that $a \preceq b$ or $b \preceq a$ for all $a, b \in \mathbb{N}^{n}$. The order is translation invariant if $a+c \preceq b+c$ implies $a \preceq b$.
i) For $a, b \in \mathbb{N}^{n}, a \neq b$ set $a \prec b$ if $|a|<|b|$ or, if $|a|=|b|$ and the largest index i for which $a_{i} \neq b_{i}$ satisfies $a_{i}<b_{i}$. Show that this defines a translation invariant total order on \mathbb{N}^{n}.
Let R be a standard graded \mathbf{k}-algebra with generators $y_{1}, \ldots, y_{m} \in R_{1}$. Let $\phi: \mathbf{k}\left[x_{1}, \ldots, x_{m}\right] \rightarrow R$ be the ring map given by $\phi\left(x_{i}\right)=y_{i}$. Define a (possibly infinite) collection of monomials \mathcal{O} inductively as follows: $u_{1}:=x^{0} \in \mathcal{O}$. For $k \geq 1$, the monomial $u_{k}=\mathbf{x}^{\alpha}$ is the smallest (in the order above) monomial such that $\phi\left(u_{k}\right)$ is linearly independent of $\phi\left(u_{1}\right), \ldots, \phi\left(u_{k-1}\right)$.
ii) Show if $\mathbf{x}^{\alpha} \notin \mathcal{O}$, then $x_{i} \mathbf{x}^{\alpha} \notin \mathcal{O}$ for all $i=1, \ldots, m$. [Hint: Use the fact that ϕ is a ring map.]
iii) Show that $H(R, i)=\left|\left\{\mathbf{x}^{\alpha} \in \mathcal{O}:|\alpha|=i\right\}\right|$.
[Hint: If not, then we could have added another monomial to \mathcal{O}.]
Remark: i) shows that \mathcal{O} is a multicomplex and ii) shows that \mathcal{O} has $H(R, i)$ as its f-vector. Together this gives a proof of Macaulay's theorem.
(10 points)
Exercise 2. Let R be a graded \mathbf{k}-algebra. An element $r \in R_{1}$ is called regular if the map $R \xrightarrow{\bullet r} R$ is injective.
i) Show that if $r \in R_{1}$ is regular, then

$$
F(R /\langle r\rangle, t)=(1-t) F(R, t) .
$$

[Hint: Pass from the Hilbert function of $R /\langle r\rangle$, which you know, to the Hilbert series.]
Let $\mathbf{k}[\Delta]=\mathbf{k}\left[x_{1}, \ldots, x_{d}, y_{1}, \ldots, y_{d}\right] / I_{\Delta}$ be the Stanley-Reisner ring for the d-dimensional crosspolytope with $I_{\Delta}=\left\langle x_{1} y_{1}, \ldots, x_{d} y_{d}\right\rangle$.
ii) Show that $r_{i}:=x_{i}-y_{i}$ is regular for the ring $\mathbf{k}[\Delta] /\left\langle r_{1}, \ldots, r_{i-1}\right\rangle$.
iii) Show that $F\left(\mathbf{k}[\Delta] /\left\langle r_{1}, \ldots, r_{d}\right\rangle, t\right)=(1+t)^{d}$ by finding a good interpretation for the elements in $\mathbf{k}[\Delta] /\left\langle r_{1}, \ldots, r_{d}\right\rangle$.

Exercise 3. Let $\left(\mathbf{S} \mathcal{Q}_{d},+, \cdot\right)$ be the ring of polyhedral simple functions.
i) Let $f \in \mathbf{S} \mathcal{P}_{d} \subseteq \mathbf{S} \mathcal{Q}_{d}$. Show that for every $l \in \mathbb{Z} \backslash\{0\}$, the set $f^{-1}(l)$ is a finite union of relatively open polytopes (i.e. it is a polyconvex set).
ii) Give a characterization of the invertible elements of $\mathbf{S} \mathcal{Q}_{d}$ in terms of polyconvex sets.
iii) Let $\mathbf{P Q}_{d}$ be the collection of all sets that can be written as finite unions of relatively open polyhedra in \mathbb{R}^{d}. Show that $\mathbf{P Q}_{d}$ is generated by unions, intersections, and complementation of halfspaces.
(10 points)
Exercise 4. 园 For $S \subseteq \mathbb{R}^{d}$ define the following four maps $\phi_{*}: \mathcal{P}_{d} \rightarrow\{0,1\}$
(a) $\phi \subseteq S(P)=1$ if and only if $P \subseteq S$;
(b) $\phi_{\supseteq S}(P)=1$ if and only if $P \supseteq S$;
(c) $\phi_{\cap S}(P)=1$ if and only if $P \cap S \neq \emptyset$;
(d) $\phi_{\cup S}(P)=1$ if and only if $P \cup S$ convex, for any nonempty polytope P and $\phi_{*}(\emptyset):=0$.
i) For a non-empty polytope S, which of the four maps is a valuation?
ii) Let $H^{<} \subset \mathbb{R}^{d}$ be open halfspace. Show that $\phi_{\subseteq H^{<}}$is a valuation. For which polytopes P is $\phi_{\subseteq H^{<}}(P)=1$?
iii) For a non-empty polyhedron Q define

$$
\chi(Q):= \begin{cases}1 & \text { if } Q \text { is a polytope, } \\ 0 & \text { if } Q \text { is unbounded but pointed. }\end{cases}
$$

(Remember that 'pointed' means that Q does not contain a line.) Show that χ defines a valuation on \mathcal{Q}_{d}. In particular, what is $\chi(Q)$ if Q has a nontrivial lineality space?
iv) Define $\bar{\chi}(Q)=1$ for every non-empty closed convex polyhedron. Verify that this is a valuation. What is $\chi(\operatorname{relint}(Q))$?
(10 points)

Exercise 5. Let $(\mathbf{k}[\mathcal{J}],+, \cdot)$ and $(\mathbf{k}[\mathcal{J}],+, \star)$ be the two algebra defined in Exercise 6 on Homework \#1. Working over a field \mathbf{k} was not necessary and we can define the same algebras over \mathbb{Z}. Show that $(\mathbb{Z}[\mathcal{J}],+, \cdot)$ and $(\mathbb{Z}[\mathcal{J}],+, \star)$ are isomorphic to subalgebras of $\mathbf{S} \mathcal{Q}_{n}$. That is, find polyhedral simple functions $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{Z}$ and $g_{A}: \mathbb{R}^{n} \rightarrow \mathbb{Z}$ for $A \in \mathcal{J}$ such that $e_{A} \mapsto f_{A}$ and $e_{A} \mapsto g_{A}$ induce isomorphisms.
[Hint: Any collection of polytopes generate a subalgebra of $\mathbf{S} \mathcal{Q}_{d}$.]
(10 points)

