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You can write your solution to the homeworks in pairs. Please try to solve all problems.

This will deepen the understanding of the material covered in the lectures. You are welcome

to ask (in person or email) for additional hints for any exercise. Please think about the

exercise before you ask. Please mark four of your solutions. Only these will be graded. The

problems marked with a � are mandatory. You can earn 20 points on every (1 week)

homework sheet. You can get extra credit by solving the bonus problems. State who wrote

up the solution. You have to hand in the solutions before the recitation on Wednesday.

Exercise 1. � A total order on Nn is a partial order relation � such that a � b or b � a for

all a, b ∈ Nn. The order is translation invariant if a+ c � b+ c implies a � b.
i) For a, b ∈ Nn, a 6= b set a ≺ b if |a| < |b| or, if |a| = |b| and the largest index

i for which ai 6= bi satisfies ai < bi. Show that this defines a translation

invariant total order on Nn.

Let R be a standard graded k-algebra with generators y1, . . . , ym ∈ R1. Let

φ : k[x1, . . . , xm]→ R be the ring map given by φ(xi) = yi. Define a (possibly

infinite) collection of monomials O inductively as follows: u1 := x0 ∈ O. For

k ≥ 1, the monomial uk = xα is the smallest (in the order above) monomial

such that φ(uk) is linearly independent of φ(u1), . . . , φ(uk−1).

ii) Show if xα 6∈ O, then xix
α 6∈ O for all i = 1, . . . ,m.

[Hint: Use the fact that φ is a ring map.]

iii) Show that H(R, i) = |{xα ∈ O : |α| = i}|.
[Hint: If not, then we could have added another monomial to O.]

Remark: i) shows that O is a multicomplex and ii) shows that O has H(R, i)

as its f -vector. Together this gives a proof of Macaulay’s theorem.

(10 points)

Exercise 2. Let R be a graded k-algebra. An element r ∈ R1 is called regular if the map

R
·r→ R is injective.

i) Show that if r ∈ R1 is regular, then

F (R/〈r〉, t) = (1− t)F (R, t).

[Hint: Pass from the Hilbert function of R/〈r〉, which you know, to the

Hilbert series.]

Let k[∆] = k[x1, . . . , xd, y1, . . . , yd]/I∆ be the Stanley–Reisner ring for the

d-dimensional crosspolytope with I∆ = 〈x1y1, . . . , xdyd〉.
ii) Show that ri := xi − yi is regular for the ring k[∆]/〈r1, . . . , ri−1〉.

iii) Show that F (k[∆]/〈r1, . . . , rd〉, t) = (1 + t)d by finding a good interpreta-

tion for the elements in k[∆]/〈r1, . . . , rd〉.
(10 points)



Exercise 3. Let (SQd,+, ·) be the ring of polyhedral simple functions.

i) Let f ∈ SPd ⊆ SQd. Show that for every l ∈ Z \ {0}, the set f−1(l) is a

finite union of relatively open polytopes (i.e. it is a polyconvex set).

ii) Give a characterization of the invertible elements of SQd in terms of poly-

convex sets.

iii) Let PQd be the collection of all sets that can be written as finite unions of

relatively open polyhedra in Rd. Show that PQd is generated by unions,

intersections, and complementation of halfspaces.

(10 points)

Exercise 4. � For S ⊆ Rd define the following four maps φ∗ : Pd → {0, 1}
(a) φ⊆S(P ) = 1 if and only if P ⊆ S;

(b) φ⊇S(P ) = 1 if and only if P ⊇ S;

(c) φ∩S(P ) = 1 if and only if P ∩ S 6= ∅;
(d) φ∪S(P ) = 1 if and only if P ∪ S convex,

for any nonempty polytope P and φ∗(∅) := 0.

i) For a non-empty polytope S, which of the four maps is a valuation?

ii) Let H< ⊂ Rd be open halfspace. Show that φ⊆H< is a valuation. For

which polytopes P is φ⊆H<(P ) = 1?

iii) For a non-empty polyhedron Q define

χ(Q) :=

1 if Q is a polytope,

0 if Q is unbounded but pointed.

(Remember that ’pointed’ means that Q does not contain a line.) Show

that χ defines a valuation on Qd. In particular, what is χ(Q) if Q has a

nontrivial lineality space?

iv) Define χ(Q) = 1 for every non-empty closed convex polyhedron. Verify

that this is a valuation. What is χ(relint(Q))?

(10 points)

Exercise 5. Let (k[J ],+, ·) and (k[J ],+, ?) be the two algebra defined in Exercise 6 on

Homework #1. Working over a field k was not necessary and we can define the

same algebras over Z. Show that (Z[J ],+, ·) and (Z[J ],+, ?) are isomorphic

to subalgebras of SQn. That is, find polyhedral simple functions fA : Rn → Z
and gA : Rn → Z for A ∈ J such that eA 7→ fA and eA 7→ gA induce

isomorphisms.

[Hint: Any collection of polytopes generate a subalgebra of SQd.]

(10 points)


