Discrete Geometry III

Homework \＃ 1 －due October 28th

You can write your solution to the homeworks in pairs．Please try to solve all problems． This will deepen the understanding of the material covered in the lectures．You are welcome to ask（in person or email）for additional hints for any exercise．Please think about the exercise before you ask．Please mark four of your solutions．Only these will be graded．The problems marked with a $⿴ 囗 ⿰ 丿 ㇄$ homework sheet．You can get extra credit by solving the bonus problems．State who wrote up the solution．You have to hand in the solutions before the recitation on Wednesday． Homework sheets and additional information（including corrections）will be announced on the mailinglist．If you haven＇t signed up already，please do that at
https：／／lists．fu－berlin．de／listinfo／dg3
On the first exercise sheet，please state your full name，student id（Matrikel nummer）， semester．and＇category＇（e．g．Math，computer science；MSc，BSc，Diplom）．

Exercise 1．Let $C_{4}(n)$ be the cyclic 4 －polytope on n vertices．
i）Give a formula for $f_{i}\left(C_{4}(n)\right)$ for all $0 \leq i \leq 3$ ．
ii）Explicitly compute the f－vectors of $C_{4}(5)$ and $C_{4}(9)$ ．
iii）Show that $\frac{1}{2}\left(f\left(C_{4}(5)\right)+f\left(C_{4}(9)\right)\right)$ is not the f－vector of a 4－polytope．
（10 points）
Exercise 2．Let $P \subset \mathbb{R}^{d}$ be a simple d－polytope and $F \subseteq P$ a proper face．The truncation of F is a polytope $P^{\prime}=P \cap\{x: \ell(x) \leq 0\}$ for an affine functional $\ell(x)$ such that $\ell(v)>0$ for $v \in V(F)$ and $\ell(v)<0$ for $v \in V(P) \backslash F$ ．
i）Show that P^{\prime} is a simple polytope．
ii）For the case that F is a vertex，describe $h\left(P^{\prime}\right)-h(P)$ ．
iii）Bonus：Describe $h\left(P^{\prime}\right)-h(P)$ for general F ．

Exercise 3．Explicitly compute the h－vectors for the following classes of polytopes：
i）The d－dimensional simplex $\Delta_{d}=\operatorname{conv}\left(e_{1}, \ldots, e_{d+1}\right)$ ；
ii）The d－dimensional cube $C_{d}=[0,1]^{d}$ ；
iii）For $k_{1} \leq k_{2} \leq \cdots \leq k_{m}$ ，the product of simplices

$$
\Delta_{k_{1}, \ldots, k_{m}}=\Delta_{k_{1}} \times \Delta_{k_{2}} \times \cdots \times \Delta_{k_{m}}
$$

iv）In general，if P and Q are simple，then compute $h(P \times Q)$ from $h(P)$ and $h(Q)$ ．
［Hint：Think about this in terms of f－polynomials．］

Exercise 4. The $(d-1)$-dimensional permutahedron is the polytope

$$
\Pi_{d-1}:=\operatorname{conv}\{(\pi(1), \ldots, \pi(d)): \pi \text { permutation }\}
$$

i) Let u, v be vertices of Π_{d-1}. Show that $[u, v]=\operatorname{conv}(u, v)$ is an edge of Π_{d-1} if and only if $u-v=e_{i}-e_{j}$ for some $i \neq j$.
[Hint: Argue that it is sufficient to assume $v=(1,2, \ldots, d)$].
ii) For a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{d}\right)$ of [d] an ascent is $1 \leq i<d$ such that $\pi_{i}<\pi_{i+1}$. Show that $h_{k}\left(\Pi_{d-1}\right)$ is exactly the number of permutations with k ascents.
[Hint: Choose your linear function wisely.]
iii) Explicitly compute $h\left(\Pi_{3}\right)=\left(h_{0}, h_{1}, h_{2}, h_{3}\right)$.
(10 points)
Exercise 5. Let P be a 4-dimensional simple polytope:
i) Write out the f-vector equations obtained for $1 \leq k \leq 4$ from

$$
\sum_{F \text {-face of } P} \chi(F)=f_{k}(P)
$$

where $\chi(F)$ is the Euler characteristic $\chi(F)=\sum_{i \geq 0}(-1)^{i} f_{i}(F)$.
ii) Show that these 4 equations give only 2 linearly independent conditions on f-vectors of simple polytopes.
(10 points)
Exercise 6. Let $\mathcal{J} \subseteq 2^{[n]}$ be a collection of subsets such that $A \cap B \in \mathcal{J}$ and $A \cup B \in \mathcal{J}$ for any $A, B \in \mathcal{J}$. For a field \mathbf{k}, let $\mathbf{k}[\mathcal{J}]$ be the \mathbf{k}-vector space with basis $\left\{e_{A}: A \in \mathcal{J}\right\}$.
i) Verify that $\mathbf{k}[\mathcal{J}]$ is a \mathbf{k}-algebra with multiplication given on generators by

$$
e_{A} \cdot e_{B}:=e_{A \cap B}
$$

What is the unit in $\mathbf{k}[\mathcal{J}]$?
ii) Verify that $\mathbf{k}[\mathcal{J}]$ is also a \mathbf{k}-algebra with multiplication induced by

$$
e_{A} \star e_{B}:= \begin{cases}e_{A} & \text { if } A=B \\ 0 & \text { otherwise }\end{cases}
$$

iii) Show that the linear map $\phi: \mathbf{k}[\mathcal{J}] \rightarrow \mathbf{k}[\mathcal{J}]$ given on basis elements by

$$
\phi\left(e_{A}\right):=\sum_{B \in \mathcal{J}, B \subseteq A} e_{B}
$$

gives a ring map $\phi:(\mathbf{k}[\mathcal{J}], \cdot) \rightarrow(\mathbf{k}[\mathcal{J}], \star)$. Show that this is even an isomorphism.
iv) [Bonus] Can you give an explicit inverse for ϕ ?

(10+3 points)

Exercise 7. Let $n \geq 2$ be fixed. Let R be the standard graded \mathbf{k}-algebra with generators e_{A} for $\emptyset \neq A \subsetneq[n]$ and whose product satisfies

$$
e_{A} e_{B}:=0 \quad \text { if and only if } A \nsubseteq B \text { and } B \nsubseteq A
$$

For $n=4$ compute $h(t)$ and d such that $F(R, t)=\frac{h(t)}{(1-t)^{d}}$. (Do you recognize the coefficients?)

