Discrete Geometry II

Homework \# 13- due July 10th

Exercise 1. In this exercise you will prove that every log-concave sequence arises as mixed volumes of two convex bodies. Let $T=\operatorname{conv}\left\{e_{0}:=0, e_{1}, \ldots, e_{d}\right\} \subset \mathbb{R}^{d}$ be a d-simplex.
i) Show that the following are the $d+1$ maximal cells of a triangulation of $T \times[0,1] \cong \operatorname{Cay}(T, T):$

$$
C_{i}=\operatorname{conv}\left\{\binom{e_{0}}{0},\binom{e_{1}}{0}, \ldots,\binom{e_{i}}{0},\binom{e_{i}}{1}, \ldots,\binom{e_{d}}{1}\right\}
$$

for $i=0,1, \ldots, d$.
For $\lambda \in \mathbb{R}^{d}$ such that $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{d}$ let $T^{\lambda}=\operatorname{conv}\left\{e_{0}, \lambda_{1} e_{1}, \ldots, \lambda_{d} e_{d}\right\}$ be a deformation of T.
ii) (Bonus) Show that the deformation C_{i}^{λ} of C_{i} yields a triangulation of $\operatorname{Cay}\left(T^{\lambda}, T\right)$.
[Hint: The crucial part is to show that $\bigcup_{i} C_{i}^{\lambda}=\operatorname{Cay}\left(T^{\lambda}, T\right)$.]
iii) Assuming ii) show that

$$
M V\left(T^{\lambda}[k], T[d-k]\right)=\operatorname{vol}_{d}(T) \lambda_{1} \lambda_{2} \cdots \lambda_{k}
$$

iv) Let $a_{0}, a_{1}, \ldots, a_{d}>0$ be a log-concave sequence. Argue that we can assume that $a_{0}=\frac{1}{d!}$ and show that for $\lambda_{1}=\frac{a_{0}}{a_{1}}$ and $\lambda_{i}=\frac{a_{i-1} a_{i+1}}{a_{i}^{2}}$ for $i \geq 2$ we can use iii) to get $a_{i}=M V\left(T^{\lambda}[k], T[d-k]\right)$.
(10+3 points)

Exercise 2. i) Let $\omega_{k}=\operatorname{vol}_{k}\left(B_{k}\right)$ be the volume of the k-dimensional unit ball. Show that the sequence $\left(\omega_{0}, \omega_{1}, \omega_{2}, \ldots\right)$ is log-concave.
ii) Show that the sequence $a_{k}=\binom{d}{k}, k=0, \ldots, d$, is log-concave but not concave.
(10 points)

Exercise 3. i) Let $S=[p, q] \subset \mathbb{R}^{d}$ be a lattice segment (i.e. $p, q \in \mathbb{Z}^{d}$). Show that $E_{S}(n)=g \cdot n+1$ where g is the greatest common divisor of the numbers $\left|p_{i}-q_{i}\right|$ for $i=1, \ldots, d$.
Let $P \subset \mathbb{R}^{2}$ be a lattice triangle.
i) P is called special if P has two sides parallel to the coordinate axes. Show that $E_{P}(n)$ is a polynomial.
[Hint: You can complete P to an axes-aligned rectangle.]
ii) Show that $E_{P}(n)$ is a polynomial for arbitrary lattice triangles.
[Hint: Show that you can trap P in an axis-aligned rectangle.]

