Institut für Mathematik
Prof. Raman Sanyal
Dr. Ivan Izmestiev

Discrete Geometry II

Homework \# 12- due July 3rd

Exercise 1. Let $P, Q \subset \mathbb{R}^{2}$ be two polygons in the plane. Minkowski's first inequality implies that mixed volume (here also called mixed area) satisfies

$$
M V(P, Q)^{2} \geq \operatorname{vol}_{2}(P) \operatorname{vol}_{2}(Q)
$$

and with equality if and only if P and Q are homothetic. The goal of this exercise is to prove the inequality in the plane.
i) Show that it is sufficient to assume that $\operatorname{vol}_{2}(P)=\operatorname{vol}_{2}(Q)=1$.
ii) Let $a_{1}, \ldots, a_{n} \in \mathbb{R}^{2}$ be the unit facet normals of P and define

$$
Q^{\prime}:=\left\{x \in \mathbb{R}^{2}: a_{i}^{t} x \leq h_{Q}\left(a_{i}\right) \text { for } i=1, \ldots, n\right\} .
$$

Show that $\operatorname{vol}_{2}\left(Q^{\prime}\right) \geq 1$ and show that $M V(Q, P) \geq M V\left(Q^{\prime}, P\right)$.
[Hint: Consider the support function of Q^{\prime}.]
iii) Show that $M V\left(Q^{\prime}, P\right) \geq 1$.
[Hint: P is a solution to a Minkowski problem.]
(10 points)
Exercise 2. Denote by $\pi_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d-1}$ the orthogonal projection that deletes the i-th coordinate and let $K \subset \mathbb{R}^{d}$ be a convex body.
i) Show that

$$
\frac{1}{d} \sum_{i=1}^{d} \operatorname{vol}_{d-1}\left(\pi_{i}(K)\right)=\operatorname{MV}\left(K[d-1],[0,1]^{d}\right) .
$$

ii) Prove the inequality

$$
\frac{1}{d} \sum_{i=1}^{d} \operatorname{vol}_{d-1}\left(\pi_{i}(K)\right) \geq \operatorname{vol}_{d}(K)^{\frac{d-1}{d}}
$$

and give an example of K for which equality holds.
(10 points)

Exercise 3. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}^{2}$ be positively spanning unit vectors and assume that they are ordered counterclockwise. Let $\mathcal{B} \subset \mathbb{R}^{n}$ be the set of those $b \in \mathbb{R}^{n}$ for which $P(b)=\left\{x \in \mathbb{R}^{2}: a_{i}^{t} x \leq b_{i}\right.$ for $\left.i=1, \ldots, n\right\}$ is a polygon and all hyperplanes $\left\{x: a_{i}^{t} x=b_{i}\right\}$ are supporting.
i) Show that there is a quadratic form $q(y)=\frac{1}{2} y^{t} Q y$ with $Q \in \mathbb{R}^{n \times n}$ symmetric such that $\operatorname{vol}_{2}(P(b))=q(b)$ for all $b \in \mathcal{B}$.
ii) Show that the form $q(b)$ has nullity ≥ 2 and Q has at least one positive eigenvalue. (The nullity of $q(x)$ is the dimension of $\operatorname{ker}(Q)$.)
iii) Show that

$$
M V\left(P(b), P\left(b^{\prime}\right)\right)=b^{t} Q b^{\prime}
$$

for $b, b^{\prime} \in \mathcal{B}$.
iv) (Bonus) With the help of the Minkowski inequality

$$
q\left(b, b^{\prime}\right)^{2} \geq q(b, b) q\left(b^{\prime}, b^{\prime}\right)
$$

prove that Q has exactly one positive eigenvalue.

