Institut für Mathematik
Prof. Raman Sanyal
Dr. Ivan Izmestiev

Discrete Geometry II

Homework \# 11— due June 26th

Exercise 1. For a vector $u \in \mathbb{R}^{d} \backslash\{0\}$ let us write $[0, u]=\{\lambda u: 0 \leq \lambda \leq 1\}$ and let us denote by $u^{\perp}=\left\{x \in \mathbb{R}^{d}: u^{t} x=0\right\}$ the hyperplane perpendicular to u.
i) Show that for a convex body $K \subset \mathbb{R}^{d}$

$$
\operatorname{MV}(K[d-1],[0, u])=\frac{\|u\|}{d} \operatorname{vol}_{d-1}\left(\pi_{u}(K)\right)
$$

where $\pi_{u}: \mathbb{R}^{d} \rightarrow u^{\perp}$ is the orthogonal projection onto u^{\perp}.
ii) Show that the function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ given by $f(u):=\operatorname{MV}(K[d-1],[0, u])$ is convex.
[Hint: First observe that f is positively linear and then show that $f(u+v) \leq f(u)+f(v)$.
(10 points)

Exercise 2. i) Let $\Delta \subset \mathbb{R}^{d}$ be a d-simplex and let $P \subset \mathbb{R}^{d}$ be the result of truncating a vertex of Δ. Show that

$$
\operatorname{MV}(\Delta[d-i], P[i])=\operatorname{vol}(\Delta)
$$

for all $d>i \geq 0$. Infer that the mixed volume is not strictly monotone with respect to inclusion.
ii) Let $K, L \subset \mathbb{R}^{d}$ be convex bodies and let $d \geq r>\operatorname{dim} K$. Show that

$$
\operatorname{MV}(K[r], L[d-r])=0
$$

(10 points)

Exercise 3. i) Let $z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{R}^{d} \backslash\{0\}$ and define the zonotope

$$
Z:=\left[0, z_{1}\right]+\left[0, z_{2}\right]+\cdots+\left[0, z_{n}\right]
$$

Show that

$$
\operatorname{vol}_{d}(Z)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{d} \leq n}\left|\operatorname{det}\left(z_{i_{1}}, z_{i_{2}}, \ldots, z_{i_{d}}\right)\right|
$$

ii) Consider the function $f(u):=\operatorname{vol}_{d-1}\left(\pi_{u}(Z)\right)$ where $\pi_{u}: \mathbb{R}^{d} \rightarrow u^{\perp} \cong$ \mathbb{R}^{d-1} is defined in Exercise 1. Show that there is a zonotope $\Pi_{Z}=$ $\sum_{j=1}^{M}\left[-w_{j}, w_{j}\right]$ such that

$$
f(u)=\max \left\{u^{t} x: x \in \Pi_{Z}\right\}
$$

