Institut für Mathematik
Prof. Raman Sanyal
Dr. Ivan Izmestiev

Discrete Geometry II

Homework \# 10— due June 20th

Exercise 1. Let $A \in \mathbb{R}^{n \times d}$ be a matrix of rank $d<n$ with positively dependent rows (i.e., $\alpha^{t} A=0$ for some $\left.\alpha \in \mathbb{R}_{>0}^{n}\right)$. Let $\bar{A}=\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right) \in \mathbb{R}^{(n-d) \times n}$ be of rank $n-d$ and $\bar{A} A=0$. For $b \in \mathbb{R}^{n}$ set $\bar{b}:=\pi(b)=\bar{A} b$.
i) Show that $P_{A}(b)=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ is affinely isomorphic to $\left\{y \in \mathbb{R}^{n}: y \geq 0, \bar{A} y=\bar{b}\right\}$.
Now let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & -1 \\
1 & 1 & 2
\end{array}\right)
$$

ii) Compute $\pi\left(\mathcal{B}_{A}\right)$ and the closed inner region $\overline{\mathcal{B}}_{A}$. These are two pointed 3-dimensional cones. Draw a corresponding 2 -dimensional picture.
[Hint: This are questions about a planar point configuration.]
iii) (Bonus) How many normally non-equivalent types of simple polytopes with 6 facets are there for A ?

Exercise 2. Let $P, Q \subset \mathbb{R}^{d}$ be polytopes. The image of $P \times Q \subset \mathbb{R}^{d} \times \mathbb{R}^{d}$ under the linear projection $\pi(x, y)=x+y$ is the Minkowski sum $P+Q$. Let $c \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ be a fixed direction.
For every $p \in P+Q$ the fiber $F_{p}:=\pi^{-1}(p) \cap(P \times Q)$ is a polytope and $F_{p}^{c}=\left\{x \in F_{p}: c^{t} p\right.$ maximal $\}$ is a face of F_{p}.
i) Show that for every $p \in P+Q$ there is a unique minimal face $G_{p} \subseteq P \times Q$ such that $F_{p}^{c}=G_{p} \cap \pi^{-1}(p)$.
Denote by $\mathcal{L}:=\left\{G_{p}: p \in P+Q\right\}$ the set of these faces.
ii) Show that $\mathcal{K}=\left\{\pi\left(G_{p}\right): G_{p} \in \mathcal{L}\right\}$ is a mixed subdivision of $P+Q$.
[Hint: Show first that \mathcal{L} is a polyhedral complex.]
iii) Show \mathcal{K} is an exact mixed subdivision if F_{p}^{c} is a vertex for all $p \in P+Q$.
(10 points)
Exercise 3. Let $P_{1}, \ldots, P_{d} \subset \mathbb{R}^{d}$ such that $0 \in \operatorname{relint}\left(P_{i}\right)$ for all i and $P=P_{1}+\cdots+P_{d}$ is of dimension d. Show that the following statements are equivalent.
i) There is an exact mixed subdivision of P with a cell F of type $d(F)=(1,1, \ldots, 1)$.
ii) There are $u_{i} \in P_{i}$ such that u_{1}, \ldots, u_{d} are linearly independent.
iii) For every $I \subseteq[d]$

$$
\operatorname{dim} \sum_{i \in I} P_{i} \geq|I| .
$$

