Discrete Geometry II

Homework \# 9- due June 12th

Exercise 1. Consider the following five unit vectors in \mathbb{R}^{3} :

$$
a_{1}=\frac{1}{\sqrt{3}}(1,1,1), \quad a_{2}=\frac{1}{\sqrt{3}}(1,-1,1), \quad a_{3}=\frac{1}{\sqrt{3}}(-1,-1,1),
$$

$$
a_{4}=\frac{1}{\sqrt{3}}(-1,1,1), \quad a_{5}=(0,0,-1)
$$

i) Describe the cone $\mathcal{C}:=\mathcal{B}_{A} \cap\left\{b \in \mathbb{R}^{5} \mid b_{3}=b_{4}=b_{5}=0\right\}$.
ii) Express the volume $\operatorname{vol}\left(P_{A}(b)\right)$ as a piecewise polynomial function of the variables b_{1} and b_{2} on \mathcal{C}.
(10 points)

Exercise 2. i) Give an example of two polytopes $P_{A}\left(b^{\prime}\right)$ and $P_{A}\left(b^{\prime \prime}\right)$ such that

$$
P_{A}\left(b^{\prime}\right)+P_{A}\left(b^{\prime \prime}\right) \neq P_{A}\left(b^{\prime}+b^{\prime \prime}\right)
$$

ii) Consider the following five unit vectors in \mathbb{R}^{3} :

$$
\begin{gathered}
a_{1}=(-1,0,0), \quad a_{2}=(0,-1,0), \quad a_{3}=(0,0,-1) \\
a_{4}=\frac{1}{\sqrt{3}}(1,1,1), \quad a_{5}=(a, b, c) \in \mathbb{R}_{<0}^{3}
\end{gathered}
$$

Find the system of linear inequalities on b_{4} and b_{5} that describes the cone $\mathcal{B}_{A} \cap\left\{b \in \mathbb{R}^{5} \mid b_{1}=b_{2}=b_{3}=0\right\}$.
(10 points)

Exercise 3. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}_{>0}^{d}$ have strictly positive coordinates. For $b \in \mathbb{R}_{\geq 0}^{n}$ define the orthant-shaped polyhedron

$$
Q(b):=\left\{x \in \mathbb{R}^{d}: x \geq 0, a_{i}^{t} x \geq b_{i} \text { for all } i=1,2, \ldots, n\right\}
$$

For $\alpha \in \mathbb{R}_{>0}^{n}$ define

$$
\mathcal{Q}:=\left\{b \in \mathbb{R}_{\geq 0}^{n}: \operatorname{vol}_{d-1} Q(b)^{a_{i}} \leq \alpha_{i} \text { for all } i=1, \ldots, n\right\}
$$

i) For $i \in[n]$ and $\epsilon>0$ define $\bar{b}=b+\epsilon e_{i}$ and show that

$$
\operatorname{vol}_{d-1}\left(Q(b)^{a_{i}}\right) \leq \operatorname{vol}_{d-1}\left(Q(\bar{b})^{a_{i}}\right)
$$

ii) Show that there is an M such that $b_{i} \leq M$ for all $b \in \mathcal{Q}$.
iii) Deduce that there is a $U>0$ such that

$$
P(b):=Q(b) \cap\left\{x: x_{1}+x_{2}+\cdots+x_{d} \leq U\right\}
$$

is a polytope such that $P(b)^{a_{i}}=Q(b)^{a_{i}}$ for all i.
iv) (Bonus) Show that \mathcal{Q} is convex.

Supplementary problems

Exercise 4. For $d+1$ positively dependent vectors $a_{0}, a_{1}, \ldots, a_{d} \in \mathbb{R}^{d}$ and a vector $b \in \mathbb{R}^{d+1}$ compute the volume of the simplex $P_{A}(b)$.

Exercise 5. Let $A=\left(a_{1}, \ldots, a_{n}\right)$ be a configuration of unit vectors in \mathbb{R}^{d}. Define the contraction $c_{i}(A)$ as the following configuration of $n-1$ vectors in a_{i}^{\perp} :

$$
c_{i}\left(a_{j}\right)=a_{j}-\left(a_{i}^{\top} a_{j}\right) a_{i} \text { for all } j \neq i
$$

i) Show that the face $F_{i}(b)$ of the polyhedron $P_{A}(b)$ is congruent to the polyhedron $P_{c_{i}(A)}\left(d_{i}(b)\right) \cap a^{\perp}$, where $d_{i}(b)=\left(b_{1}, \ldots, \hat{b_{i}}, \ldots, b_{n}\right) \in \mathbb{R}^{n-1}$.
ii) Prove the formulas

$$
\begin{aligned}
& \frac{\partial \operatorname{vol}_{d-1}\left(F_{i}(b)\right)}{\partial b_{j}}=\frac{\operatorname{vol}_{d-2}\left(F_{i j}(b)\right)}{\sin \phi_{i j}} \\
& \frac{\partial \operatorname{vol}_{d-1}\left(F_{i}(b)\right)}{\partial b_{i}}=-\sum_{j \neq i} \operatorname{vol}_{d-2}\left(F_{i j}(b)\right) \cot \phi_{i j}
\end{aligned}
$$

where $F_{i j}(b)=F_{i}(b) \cap F_{j}(b)$, and $\phi_{i j}$ is the angle between a_{i} and a_{j}.
iii) (Bonus) Show that the volume is twice continuously differentiable on a subset of \mathcal{B}_{A} consisting of all b such that the system $A x \leq b$ is irredundant. Give an example showing that the volume is not thrice differentiable.

