Discrete Geometry II

Homework \# 8 - due June 5th

Exercise 1. Let $K_{1}, \ldots, K_{n} \subset \mathbb{R}^{d}$ be convex bodies. The Cayley embedding of $\left\{K_{i}\right\}_{i}$ is

$$
C=\operatorname{Cay}\left(K_{1}, K_{2}, \ldots, K_{n}\right):=\operatorname{conv}\left\{\left(p_{i}, e_{i}\right): p_{i} \in K_{i}, i=1,2, \ldots, n\right\} \subset \mathbb{R}^{d} \times \mathbb{R}^{n}
$$

i) For $\lambda \in \mathbb{R}^{n}$ such that $\lambda \geq 0$ and $\sum_{i} \lambda_{i}=1$ show that

$$
C \cap\{(x, y): y=\lambda\} \cong \sum_{i=1}^{n} \lambda_{i} K_{i}
$$

ii) Show that for every proper subset $I \subset[n]$ the Cayley embedding $\operatorname{Cay}\left(K_{i}: i \in I\right)$ is a face of C.
iii) Let $P \subset \mathbb{R}^{M}$ be a polytope and let $\pi: \mathbb{R}^{M} \rightarrow \mathbb{R}^{n}$ be a linear projection. Show that if $Q=\pi(P)$ is an $(n-1)$-simplex and every vertex of P is mapped to a vertex of Q, then P is linearly isomorphic to $\operatorname{Cay}\left(P_{1}, \ldots, P_{n}\right)$ for some polytopes P_{1}, \ldots, P_{n}.

Exercise 2. For a d-dimensional polytope $P \subset \mathbb{R}^{d}$ define

$$
f_{P}(t):=\operatorname{vol}_{d}\left(P+t B_{d}\right)
$$

where B_{d} is the unit ball.
i) For $d=2$ show that $f_{P}(t)$ is a polynomial of degree 2 and give an interpretation for the coefficients.
ii) Show that the Brunn-Minkowski inequality for $P \subset \mathbb{R}^{2}$ and B_{2} is equivalent to the isoperimetric inequality $p^{2} \geq 4 \pi a$, where p is the perimeter, and a is the area of P.
iii) For $d=3$ show that $f_{P}(t)$ is a polynomial of degree 3 and interpret its coefficients.

Exercise 3. i) Prove the weighted arithmetic-geometric-mean inequality

$$
\sum_{i=1}^{n} \lambda_{i} z_{i} \geq \prod_{i=1}^{n} z_{i}^{\lambda_{i}}
$$

for all $z_{i} \geq 0$ and $\lambda_{i} \in[0,1]$ such that $\sum_{i=1}^{n} \lambda_{i}=1$.
ii) Prove the multiplicative Brunn-Minkowski inequality:

$$
\operatorname{vol}_{d}((1-\lambda) K+\lambda L) \geq \operatorname{vol}_{d}(K)^{1-\lambda} \cdot \operatorname{vol}_{d}(L)^{\lambda}
$$

for all convex bodies $K, L \subset \mathbb{R}^{d}$ and $\lambda \in[0,1]$.
iii) What are the equality cases?

