Discrete Geometry II

Homework # 7— due May 29th

This time, you are required to choose two problems i, j such that $i \in \{1, 2\}$ and $j \in \{3, 4\}$.

Exercise 1. Let $\Delta = \operatorname{conv}\{v_0, v_1, \dots, v_d\} \subset B_d$ be a *d*-simplex inscribed in the unit ball. For every $1 \leq i \leq d+1$, let F_i be the facet not containing v_i .

i) A simplex Δ is called *regular* if every edge has the same length. Show that if Δ has maximal volume, then Δ is regular.

[Hint: Show that Δ has maximal volume if and only if for every *i* the hyperplane H_i through v_i parallel to F_i is supporting for B_d .]

From now on assume that Δ has maximal volume among all simplices with vertices in $B_d.$

ii) Compute the volume of Δ and the radius of the largest ball contained in Δ .

(10 points)

- **Exercise 2.** i) Compute the volume of the *d*-dimensional regular simplex with edge length 1.
 - ii) Let B(v_i, ¹/₂), i = 0,..., d, be pairwise tangent balls centered at the vertices of a regular simplex with edge length 1. Let B be the ball tangent to all B(v_i, ¹/₂). Compute the radius of B.

(10 points)

Exercise 3. Let $\mathcal{E} = \mathcal{E}(A, 0)$ for some positive definite matrix A.

- i) Show that the polar of \mathcal{E} is also an ellipsoid. That is, show that there is a positive definite matrix A' such that $\mathcal{E}^{\triangle} = \mathcal{E}(A', 0)$.
- ii) Let $K \subset B_d$ be a *d*-dimensional convex body with -K = K. Show that the set $\{A \in PSD_d : K \subseteq \mathcal{E}(A, 0), vol(\mathcal{E}(A, 0)) \leq vol(B_d)\}$ is closed and bounded.
- iii) Infer that there exists an ellipsoid of minimum volume containing K and an ellipsoid of maximum volume contained in K.

(10 points)

Exercise 4. Let $a, b, c \in \mathbb{R}^2$ be three non-collinear points.

- i) Show that there is a unique ellipse \mathcal{E} inscribed in the triangle $T = \operatorname{conv}\{a, b, c\}$ and tangent to its sides at their midpoints.
- ii) Show that the area of \mathcal{E} is $\frac{\pi}{3\sqrt{3}}$ times the area of the triangle T and that the area of any other inscribed ellipse is smaller than that.
- iii) (Bonus) Identifying \mathbb{R}^2 with \mathbb{C} , put P(z) = (z-a)(z-b)(z-c). Show that the foci of the ellipse \mathcal{E} are the zeros of the derivative P'(z).