Discrete Geometry II

Homework \# 7- due May 29th

This time, you are required to choose two problems i, j such that $i \in\{1,2\}$ and $j \in\{3,4\}$.
Exercise 1. Let $\Delta=\operatorname{conv}\left\{v_{0}, v_{1}, \ldots, v_{d}\right\} \subset B_{d}$ be a d-simplex inscribed in the unit ball. For every $1 \leq i \leq d+1$, let F_{i} be the facet not containing v_{i}.
i) A simplex Δ is called regular if every edge has the same length. Show that if Δ has maximal volume, then Δ is regular.
[Hint: Show that Δ has maximal volume if and only if for every i the hyperplane H_{i} through v_{i} parallel to F_{i} is supporting for B_{d}]
From now on assume that Δ has maximal volume among all simplices with vertices in B_{d}.
ii) Compute the volume of Δ and the radius of the largest ball contained in Δ.

Exercise 2. i) Compute the volume of the d-dimensional regular simplex with edge length 1 .
ii) Let $B\left(v_{i}, \frac{1}{2}\right), i=0, \ldots, d$, be pairwise tangent balls centered at the vertices of a regular simplex with edge length 1 . Let B be the ball tangent to all $B\left(v_{i}, \frac{1}{2}\right)$. Compute the radius of B.
(10 points)

Exercise 3. Let $\mathcal{E}=\mathcal{E}(A, 0)$ for some positive definite matrix A.
i) Show that the polar of \mathcal{E} is also an ellipsoid. That is, show that there is a positive definite matrix A^{\prime} such that $\mathcal{E}^{\triangle}=\mathcal{E}\left(A^{\prime}, 0\right)$.
ii) Let $K \subset B_{d}$ be a d-dimensional convex body with $-K=K$. Show that the set $\left\{A \in \mathrm{PSD}_{d}: K \subseteq \mathcal{E}(A, 0), \operatorname{vol}(\mathcal{E}(A, 0)) \leq \operatorname{vol}\left(B_{d}\right)\right\}$ is closed and bounded.
iii) Infer that there exists an ellipsoid of minimum volume containing K and an ellipsoid of maximum volume contained in K.
(10 points)

Exercise 4. Let $a, b, c \in \mathbb{R}^{2}$ be three non-collinear points.
i) Show that there is a unique ellipse \mathcal{E} inscribed in the triangle $T=\operatorname{conv}\{a, b, c\}$ and tangent to its sides at their midpoints.
ii) Show that the area of \mathcal{E} is $\frac{\pi}{3 \sqrt{3}}$ times the area of the triangle T and that the area of any other inscribed ellipse is smaller than that.
iii) (Bonus) Identifying \mathbb{R}^{2} with \mathbb{C}, put $P(z)=(z-a)(z-b)(z-c)$. Show that the foci of the ellipse \mathcal{E} are the zeros of the derivative $P^{\prime}(z)$.

