Discrete Geometry II

Homework \# 6- due May 22nd

Exercise 1. Let $C_{d}=[0,1]^{d}$ be the d-cube. Define $\bar{\omega}: C \rightarrow \mathbb{R}$ by

$$
\bar{\omega}(p):=\sum_{1 \leq i<j \leq d}\left|p_{i}-p_{j}\right|
$$

for $p \in C_{d}$. Show that $\bar{\omega}$ is a piecewise-linear convex function and determine the domains of linearity, that is, determine the maximal cells in the induced subdivision \mathcal{K}^{ω} (where ω is the restriction of $\bar{\omega}$ to the vertices of C_{d}).
(10 points)

Exercise 2. Let $P \subset \mathbb{R}^{d}$ be a d-polytope and let $b_{F} \in \operatorname{relint}(F)$ for all non-empty faces $F \subseteq P$. For $\varepsilon>0$ define

$$
\omega\left(b_{F}\right):=\varepsilon^{\operatorname{dim}(F)}
$$

i) Show that if ε is sufficiently small, then

$$
\operatorname{conv}\left\{\binom{b_{F}}{\omega\left(b_{F}\right)},\binom{b_{P}}{\omega\left(b_{P}\right)}\right\}
$$

is an edge of P^{ω} for every proper face $F \subset P$.
[Hint: Writing any point on the segment as a convex combination of other points will have larger height.]
ii) Infer that the maximal cells of $\mathcal{K}^{\omega}(P)$ are pyramids over the maximal cells of $\mathcal{K}^{\omega}(F)$ for F a facet of P.
iii) Show that the regular subdivision \mathcal{K}^{ω} is the barycentric subdivision. [Hint: Induction on the dimension.]
(10 points)

Exercise 3. For each of the shown subdivisions, determine whether it is regular or not.

Exercise 4. Let $s_{1}, s_{2}, s_{3}, s_{4} \in \mathbb{R}^{2}$ be the vertices of a convex quadrilateral P. There are three distinct subdivisions of P : one consisting of P only, and two where P is subdivided by a diagonal. A subdivision of P is Delaunay if every cell C has a circumcircle and all vertices outside C lie outside its circumcircle.

Prove the following two characterizations of the Delaunay subdivision.
i) Show that for $\omega(s):=\|s\|^{2}$, the subdivision \mathcal{K}^{ω} of P is Delaunay. [Hint: Changing ω by a linear function does not change \mathcal{K}^{ω}.]
ii) Identify \mathbb{R}^{2} with the $x y$-plane in \mathbb{R}^{3}. Let $S \subset \mathbb{R}^{3}$ be the unit sphere centered at $(0,0,1)$ and $a=(0,0,2)$ be its north pole. Denote by $\widehat{s_{i}}$ the intersection $S \cap\left(a, s_{i}\right]$ (stereographic projection). Then the Delaunay subdivision consists of the faces of $\operatorname{conv}\left\{a, \widehat{s_{1}}, \widehat{s_{2}}, \widehat{s_{3}}, \widehat{s_{4}}\right\}$ projected from the point a back to \mathbb{R}^{2}.

