FREIE UNIVERSITÄT BERLIN Institut für Mathematik Prof. Raman Sanyal Dr. Ivan Izmestiev

Discrete Geometry II

Homework # 6— due May 22nd

Exercise 1. Let $C_d = [0,1]^d$ be the *d*-cube. Define $\overline{\omega} : C \to \mathbb{R}$ by

$$\overline{\omega}(p) := \sum_{1 \le i < j \le d} |p_i - p_j|$$

for $p \in C_d$. Show that $\overline{\omega}$ is a piecewise-linear convex function and determine the domains of linearity, that is, determine the maximal cells in the induced subdivision \mathcal{K}^{ω} (where ω is the restriction of $\overline{\omega}$ to the vertices of C_d).

(10 points)

Exercise 2. Let $P \subset \mathbb{R}^d$ be a *d*-polytope and let $b_F \in \operatorname{relint}(F)$ for all non-empty faces $F \subseteq P$. For $\varepsilon > 0$ define

$$\omega(b_F) := \varepsilon^{\dim(F)}$$

i) Show that if ε is sufficiently small, then

$$\operatorname{conv}\left\{\binom{b_F}{\omega(b_F)}, \binom{b_P}{\omega(b_P)}\right\}$$

is an edge of P^{ω} for every proper face $F \subset P$.

[Hint: Writing any point on the segment as a convex combination of other points will have larger height.]

- ii) Infer that the maximal cells of $\mathcal{K}^{\omega}(P)$ are pyramids over the maximal cells of $\mathcal{K}^{\omega}(F)$ for F a facet of P.
- iii) Show that the regular subdivision \mathcal{K}^{ω} is the barycentric subdivision. [Hint: Induction on the dimension.]

(10 points)

Exercise 3. For each of the shown subdivisions, determine whether it is regular or not.

(10 points)

(continued on backside)

SS2013

Exercise 4. Let $s_1, s_2, s_3, s_4 \in \mathbb{R}^2$ be the vertices of a convex quadrilateral P. There are three distinct subdivisions of P: one consisting of P only, and two where P is subdivided by a diagonal. A subdivision of P is Delaunay if every cell C has a circumcircle and all vertices outside C lie outside its circumcircle.

Prove the following two characterizations of the Delaunay subdivision.

- i) Show that for $\omega(s) := ||s||^2$, the subdivision \mathcal{K}^{ω} of P is Delaunay. [Hint: Changing ω by a linear function does not change \mathcal{K}^{ω} .]
- ii) Identify \mathbb{R}^2 with the xy-plane in \mathbb{R}^3 . Let $S \subset \mathbb{R}^3$ be the unit sphere centered at (0,0,1) and a = (0,0,2) be its north pole. Denote by \hat{s}_i the intersection $S \cap (a, s_i]$ (stereographic projection). Then the Delaunay subdivision consists of the faces of conv $\{a, \hat{s}_1, \hat{s}_2, \hat{s}_3, \hat{s}_4\}$ projected from the point a back to \mathbb{R}^2 .

(10 points)