Discrete Geometry II

Homework \# 5- due May 15th

Exercise 1. i) Let P be a d-polytope with facets $F_{1}, F_{2}, \ldots, F_{m}$. Show that

$$
\operatorname{vol}_{d-1}\left(F_{1}\right)<\sum_{i=2}^{m} \operatorname{vol}_{d-1}\left(F_{i}\right)
$$

ii) Prove Minkowski's theorem in the plane: If $u_{1}, \ldots, u_{m} \in \mathbb{R}^{2}$ are unit vectors spanning the plane and $\alpha_{1}, \ldots, \alpha_{m}>0$ such that $\alpha_{1} u_{1}+\cdots+\alpha_{m} u_{m}=0$, then there is a polygon P, unique up to translation, with outer facet normals u_{i} and corresponding facet volumes α_{i}.

Exercise 2. Show that the barycentric subdivision $\tilde{\operatorname{sd}}(P)$ gives a dissection of P into simplices. For that you have to show that int $\Delta\left(\mathcal{F}_{1}\right) \cap \operatorname{int} \Delta\left(\mathcal{F}_{2}\right)=\varnothing$ for any two flags $\mathcal{F}_{1} \neq \mathcal{F}_{2}$ and that for every point $p \in P$ there is a flag \mathcal{F} with $p \in \Delta(\mathcal{F})$.
(10 points)
Exercise 3. Let $P=\operatorname{conv}\left\{v_{0}, v_{1}, \ldots, v_{d}\right\}$ be a d-simplex. Consider the matrix

$$
D=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & \ell_{00} & \ell_{01} & \cdots & \ell_{0 d} \\
1 & \ell_{10} & \ddots & & \ell_{1 d} \\
\vdots & \vdots & & & \vdots \\
1 & \ell_{d 0} & \ell_{d 1} & \cdots & \ell_{d d}
\end{array}\right) \quad \text { where } \ell_{i j}=\left\|v_{i}-v_{j}\right\|^{2}
$$

Show that $2^{d}(d!)^{2} \operatorname{vol}_{d}(P)^{2}=(-1)^{d-1} \operatorname{det}(D)$.

Exercise 4. For a triangle $\Delta=\operatorname{conv}\{a, b, c\}$ with ordered vertices $a, b, c \in \mathbb{R}^{2}$, let us define the signed volume of Δ as

$$
\operatorname{vol}^{\circ}(\Delta)=\frac{1}{2} \operatorname{det}\left(\begin{array}{lll}
1 & 1 & 1 \\
a & b & c
\end{array}\right)
$$

Let $P=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\}$ be a polygon with vertices ordered counterclockwise, and let $p \in \operatorname{int}(P)$ be a point in the interior.
i) Show that
(\star

$$
\operatorname{vol}_{2}(P)=\frac{1}{2} \sum_{i=1}^{n} \operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
p & v_{i} & v_{i+1}
\end{array}\right) \quad \text { where } v_{n+1}:=v_{1}
$$

ii) Argue geometrically that the right-hand side of (\star) is independent of the choice of $p \in \mathbb{R}^{2}$ (whether inside P or not). This shows that the volume is a polynomial in the vertex coordinates, invariant under translation.

