Discrete Geometry II

Homework \# 4- due May 8th

Exercise 1. i) Let $V=\left\{v_{0}, v_{1}, \ldots, v_{d}\right\} \subset \mathbb{R}^{d}$. Show that $V \subseteq H$ for some hyperplane H if and only if

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
v_{0} & v_{1} & \cdots & v_{d}
\end{array}\right)=0
$$

ii) Let $P=\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a polytope and let $\epsilon>0$. Show that there is a simplicial polytope $P^{\prime}=\operatorname{conv}\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}\right\}$ with Hausdorff distance $d\left(P, P^{\prime}\right) \leq \epsilon$.
iii) Let $P_{1}=\operatorname{conv}\left\{ \pm e_{1}, \pm e_{2}\right\}$. What is the square $P_{2} \subset \mathbb{R}^{2}$ with vertices on the unit circle and $d\left(P_{1}, P_{2}\right)$ maximal?

Exercise 2. For a box $B=\left\{x \in \mathbb{R}^{d}: a_{i} \leq x_{i} \leq b_{i}\right.$ for $\left.i=1, \ldots, d\right\}$ define the volume of B as $\operatorname{vol}_{d}(B):=\left(b_{1}-a_{1}\right) \cdots\left(b_{d}-a_{d}\right)$ if $B \neq \varnothing$ and $\operatorname{vol}_{d}(\varnothing):=0$.
i) Show that vol $_{d}$ is a valuation on the family of boxes: If B, C are boxes such that $B \cup C$ is a box, then

$$
\operatorname{vol}_{d}(B \cup C)+\operatorname{vol}_{d}(B \cap C)=\operatorname{vol}_{d}(B)+\operatorname{vol}_{d}(C)
$$

ii) Let B, B_{1}, \ldots, B_{k} be boxes such that $B=B_{1} \cup B_{2} \cup \cdots \cup B_{k}$ and $\operatorname{int}\left(B_{i}\right) \cap$ $\operatorname{int}\left(B_{j}\right)=\varnothing$ for all $i \neq j$. Show that

$$
\operatorname{vol}_{d}(B)=\operatorname{vol}_{d}\left(B_{1}\right)+\cdots+\operatorname{vol}_{d}\left(B_{k}\right)
$$

[Hint: Pick a suitable hyperplane H and consider $B \cap H^{+}$and $B \cap H^{-}$.]
iii) Deduce that vol_{d} is well-defined on polyboxes: For a polybox $S \subset \mathbb{R}^{d}$, we can set

$$
\operatorname{vol}_{d}(S):=\operatorname{vol}_{d}\left(B_{1}\right)+\cdots+\operatorname{vol}_{d}\left(B_{k}\right)
$$

for any collection B_{1}, \ldots, B_{k} of boxes such that $S=B_{1} \cup B_{2} \cup \cdots \cup B_{k}$ and $\operatorname{int}\left(B_{i}\right) \cap \operatorname{int}\left(B_{j}\right)=\varnothing$ for all $i \neq j$.
[Hint: For two such representations consider the 'common refinement'.]
(10 points)
Exercise 3. Let K, L be convex bodies in \mathbb{R}^{d} such that $0 \in \operatorname{int}(K)$ and $0 \in \operatorname{int}(L)$.
i) Prove or disprove: For any $\epsilon>0$ there exists $\delta>0$ such that $d(K, L)<\delta$ implies $d\left(K^{\triangle}, L^{\triangle}\right)<\epsilon$.
ii) Show that if $\left|\frac{1}{d_{K}}(x)-\frac{1}{d_{L}}(x)\right|<\epsilon$ for all $x \in \mathbb{S}^{d-1}$, then $d(K, L)<\epsilon$.
iii) Assume additionally that both K and L are contained in $B_{R}(0)$. Show that then $\left|d_{K}(x)-d_{L}(x)\right|<\frac{\epsilon}{R^{2}}$ for all $x \in \mathbb{S}^{d-1}$ implies $d(K, L)<\epsilon$.
(10 points)

