Discrete Geometry II

Homework # 4— due May 8th

Exercise 1. i) Let $V = \{v_0, v_1, \dots, v_d\} \subset \mathbb{R}^d$. Show that $V \subseteq H$ for some hyperplane H if and only if

$$\det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ v_0 & v_1 & \cdots & v_d \end{pmatrix} = 0.$$

- ii) Let $P = \operatorname{conv}\{v_1, v_2, \dots, v_n\}$ be a polytope and let $\epsilon > 0$. Show that there is a simplicial polytope $P' = \operatorname{conv}\{v'_1, v'_2, \dots, v'_m\}$ with Hausdorff distance $d(P, P') \leq \epsilon$.
- iii) Let $P_1 = \operatorname{conv}\{\pm e_1, \pm e_2\}$. What is the square $P_2 \subset \mathbb{R}^2$ with vertices on the unit circle and $d(P_1, P_2)$ maximal?

(10 points)

- **Exercise 2.** For a box $B = \{x \in \mathbb{R}^d : a_i \leq x_i \leq b_i \text{ for } i = 1, \dots, d\}$ define the volume of $B \text{ as } \operatorname{vol}_d(B) := (b_1 - a_1) \cdots (b_d - a_d) \text{ if } B \neq \emptyset \text{ and } \operatorname{vol}_d(\emptyset) := 0.$
 - i) Show that vol_d is a *valuation* on the family of boxes: If B, C are boxes such that $B \cup C$ is a box, then

 $\operatorname{vol}_d(B \cup C) + \operatorname{vol}_d(B \cap C) = \operatorname{vol}_d(B) + \operatorname{vol}_d(C).$

ii) Let B, B_1, \ldots, B_k be boxes such that $B = B_1 \cup B_2 \cup \cdots \cup B_k$ and $int(B_i) \cap int(B_j) = \emptyset$ for all $i \neq j$. Show that

$$\operatorname{vol}_d(B) = \operatorname{vol}_d(B_1) + \dots + \operatorname{vol}_d(B_k).$$

[Hint: Pick a suitable hyperplane H and consider $B \cap H^+$ and $B \cap H^-$.]

iii) Deduce that vol_d is well-defined on *polyboxes*: For a polybox $S \subset \mathbb{R}^d$, we can set

$$\operatorname{vol}_d(S) := \operatorname{vol}_d(B_1) + \dots + \operatorname{vol}_d(B_k)$$

for any collection B_1, \ldots, B_k of boxes such that $S = B_1 \cup B_2 \cup \cdots \cup B_k$ and $int(B_i) \cap int(B_j) = \emptyset$ for all $i \neq j$.

[Hint: For two such representations consider the 'common refinement'.]

(10 points)

Exercise 3. Let K, L be convex bodies in \mathbb{R}^d such that $0 \in int(K)$ and $0 \in int(L)$.

- i) Prove or disprove: For any $\epsilon > 0$ there exists $\delta > 0$ such that $d(K, L) < \delta$ implies $d(K^{\Delta}, L^{\Delta}) < \epsilon$.
- ii) Show that if $\left|\frac{1}{d_K}(x) \frac{1}{d_L}(x)\right| < \epsilon$ for all $x \in \mathbb{S}^{d-1}$, then $d(K, L) < \epsilon$.
- iii) Assume additionally that both K and L are contained in $B_R(0)$. Show that then $|d_K(x) d_L(x)| < \frac{\epsilon}{R^2}$ for all $x \in \mathbb{S}^{d-1}$ implies $d(K, L) < \epsilon$.