Discrete Geometry II

Homework \# 1- due April 17th

Please work in pairs on the homeworks. (If you don't have a partner, contact Ivan). Please try to solve all problems. This will deepen the understanding of the material covered in the lectures. The 'supplementary problems' are extra. They do not count as homework problems. The problems marked with a \square are mandatory. Please mark two of your solutions. Only these will be graded. You can earn 20 points on every homework sheet. You can get extra credit by solving the bonus problems. State who wrote up the solution. You have to hand in the solutions before the recitation on Wednesday.
On the first exercise sheet, please state your full name, student id (Matrikel nummer), semester. and 'category' (e.g. Math, computer science; MSc, BSc, Diplom). Please also 'solve' the first problem!

Exercise 1. - Sign up on the mailing list at
https://lists.fu-berlin.de/listinfo/DG2
(0 points)

Exercise 2. Let $A, B \subseteq \mathbb{R}^{d}$ be convex sets. Show that the Minkowski sum

$$
A+B:=\{a+b: a \in A, b \in B\}
$$

is a convex set.

Exercise 3. A set $X \subseteq \mathbb{R}^{d}$ is called path-connected if for every two $p_{0}, p_{1} \in X$ there is a continuous function $\gamma:[0,1] \rightarrow X$ such that $\gamma(0)=p_{0}$ and $\gamma(1)=p_{1}$.

Let $K \subset \mathbb{R}^{d}$ be a (full-dimensional) convex body. Show that if the set of extreme points $X=\operatorname{ext}(K)$ is path-connected, then every point $p \in K$ is in the convex hull of d points. (This improves Carathéodory's theorem by 1.)
(10 points)

Exercise 4. Let $C \subset \mathbb{R}^{d}$ be a compact set. A point $s \in C$ is a star point if $[s, p] \subseteq C$ for all $p \in C$. Show that the set $\operatorname{St}(C)$ of star points of C is convex.
(10 points)

Exercise 5. Let $T=\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{k+1}\right\}$ be a k-simplex. Show that $p \in \operatorname{relint}(T)$ if and only if
$p=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{k+1} v_{k+1} \quad 1=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k+1}$
and $\lambda_{i}>0$ for all $i=1,2, \ldots, k+1$.

Supplementary problems

Exercise 6. Prove the Gauss-Lucas theorem: If $p(z) \in \mathbb{C}[z]$ is a univariate polynomial with roots r_{1}, \ldots, r_{d} then the roots of $p^{\prime}(z)$ are contained in $\operatorname{conv}\left\{r_{1}, \ldots, r_{d}\right\}$. [Hint: If $p(z)=\left(z-r_{1}\right)\left(z-r_{2}\right) \cdots\left(z-r_{d}\right)$, then

$$
p^{\prime}(z)=\sum_{j} \prod_{i \neq j}\left(z-r_{i}\right)
$$

For $s \in \mathbb{C}$ a root of $p^{\prime}(z)$ expand $\overline{p(s)} p^{\prime}(s)$ and use this to write s as a convex combination of the r_{i}.]

