Discrete Geometry I

Homework # 13 — due February 13th

Exercise 1. Let
$$\mathcal{H} = \{H_1, H_2, \dots, H_n\}$$
 be an arrangement of n distinct, linear hyperplanes $H_i = \{x \in \mathbb{R}^d : z_i^t x = 0\}$. Denote by $r(\mathcal{H})$ the number of regions of \mathcal{H} .

- i) Show that $r(\mathcal{H}) = r(\mathcal{H} \setminus H_i) + r(\mathcal{H}|_{H_i})$ and verify that $r(\mathcal{H}) \leq 2^n$.
- ii) Show that the inequality is strict for n > d. [Hint: You might need Radon's lemma.]
- iii) Show that for d = 3 we have $r(\mathcal{H}) \le n(n-1) + 2$ and that this bound is sharp.
- iv) (Bonus) Show that

$$r(\mathcal{H}) = (-1)^d \sum_{J \subseteq [n]} (-1)^{|J| - \dim H_J} = \sum_{J \subseteq [n]} (-1)^{|J| - \operatorname{rank}\{z_i : i \in J\}}$$

where
$$H_J = \bigcap_{i \in J} H_i$$
.

[Hint: Verify that the right-hand side satisfies the same recursion as in i)] (10+3 points)

Exercise 2. Let $P \subset \mathbb{R}^2$ be the hexagon with vertices

$$V(P) = \{\pm \binom{2}{0}, \pm \binom{0}{2}, \pm \binom{2}{2}\}.$$

Determine $\mathcal{T}(P)$, its dimension, its vertices, and its combinatorial structure. Describe the summands corresponding to faces of $\mathcal{T}(P)$.

(13 points)

- **Exercise 3.** i) Describe the indecomposable summands of a regular *n*-gon.
 - ii) Show that the join of two polytopes is always indecomposable.
 - iii) Find two combinatorially equivalent polytopes in \mathbb{R}^3 , one of which is decomposable and the other is not.

(13 points)