## Discrete Geometry I

## Homework \# 13 - due February 13th

Exercise 1. Let $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ be an arrangement of $n$ distinct, linear hyperplanes $H_{i}=\left\{x \in \mathbb{R}^{d}: z_{i}^{t} x=0\right\}$. Denote by $r(\mathcal{H})$ the number of regions of $\mathcal{H}$.
i) Show that $r(\mathcal{H})=r\left(\mathcal{H} \backslash H_{i}\right)+r\left(\left.\mathcal{H}\right|_{H_{i}}\right)$ and verify that $r(\mathcal{H}) \leq 2^{n}$.
ii) Show that the inequality is strict for $n>d$. [Hint: You might need Radon's lemma.]
iii) Show that for $d=3$ we have $r(\mathcal{H}) \leq n(n-1)+2$ and that this bound is sharp.
iv) (Bonus) Show that
$r(\mathcal{H})=(-1)^{d} \sum_{J \subseteq[n]}(-1)^{|J|-\operatorname{dim} H_{J}}=\sum_{J \subseteq[n]}(-1)^{|J|-\operatorname{rank}\left\{z_{i}: i \in J\right\}}$
where $H_{J}=\cap_{i \in J} H_{i}$.
[Hint: Verify that the right-hand side satisfies the same recursion as in i)]
( $10+3$ points)
Exercise 2. Let $P \subset \mathbb{R}^{2}$ be the hexagon with vertices

$$
V(P)=\left\{ \pm\binom{ 2}{0}, \pm\binom{ 0}{2}, \pm\binom{ 2}{2}\right\}
$$

Determine $\mathcal{T}(P)$, its dimension, its vertices, and its combinatorial structure. Describe the summands corresponding to faces of $\mathcal{T}(P)$.
(13 points)
Exercise 3. i) Describe the indecomposable summands of a regular n-gon.
ii) Show that the join of two polytopes is always indecomposable.
iii) Find two combinatorially equivalent polytopes in $\mathbb{R}^{3}$, one of which is decomposable and the other is not.

