Discrete Geometry I

Homework \# 12 - due February 6th

Exercise 1. i) Without using Gale diagrams, show that every simplicial d-polytope with $d+3$ vertices has at least $\binom{d+3}{2}-3$ edges.
ii) Using Gale diagrams show that, for $d \geq 3$, every d-polytope with $d+3$ vertices has at least $\binom{d+3}{2}-4$ edges.
iii) Describe the (unique!) d-polytope with $f_{0}=d+3$ and $f_{1}=\binom{d+3}{2}-4$.
(10 points)

Exercise 2. i) Let $F=\operatorname{conv}\left(v_{1}, \ldots, v_{k}\right)$ be a face of a convex d-polytope $P=\operatorname{conv}\left(v_{1}, \ldots, v_{n}\right)$ in \mathbb{R}^{d}. Describe how to obtain the affine Gale diagram of F from the affine Gale diagram of P.
ii) We have seen that the diagram below is an affine Gale diagram of a polytope. Show that the vertices $1,2,3$ form a cofacet and describe the combinatorial type of the corresponding facet.

iii) How many vertices does the vertex figure of the vertex 4 have? Draw its affine Gale diagram.
(10 points)

Exercise 3. i) Show that the normal fan of a polytope coincides with the face fan of its polar dual: $\mathcal{N}(P)=\mathcal{F}\left(P^{\triangle}\right)$.
ii) Describe the combinatorial structure of the Minkowski sum $P+P^{\Delta}$, where P is a 3-simplex containing the origin in its interior.
iii) Let $P_{1}, P_{2}, \ldots, P_{k} \subset \mathbb{R}^{2}$ be polygons. Show that

$$
f_{0}\left(P_{1}+P_{2}+\cdots+P_{k}\right) \leq f_{0}\left(P_{1}\right)+f_{0}\left(P_{2}\right)+\cdots+f_{0}\left(P_{k}\right)
$$

iv) (Bonus) What is the maximum number of vertices the Minkowski sum of two 3 -simplices can have?
(10+3 points)

Exercise 4. i) Show that the diameter of a zonotope $Z=\sum_{i=1}^{n}\left[-z_{i}, z_{i}\right]$ (where vectors z_{i} are pairwise non-collinear) equals n. Which pairs of points realize the maximum distance?
ii) Let $G=([n], E)$ be a simple (no parallel edges, no loops), connected graph and define the graphical zonotope

$$
\mathcal{Z}(G):=\sum_{i j \in E}\left[e_{i}-e_{j}, e_{j}-e_{i}\right]
$$

Show that the vertices are in bijection to acyclic orientations of G, i.e. orientations of the edges of G without directed cycles.
iii) Let P be a d-polytope such that each of its 2 -dimensional projections is a zonotope. Is then P itself necessarily a zonotope?
iv) (Bonus) Show that P is a zonotope if every projection of P to \mathbb{R}^{3} is a zonotope.

