Discrete Geometry I

Homework \# 11 - due January 30th

Exercise 1. Let $V=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \subset \mathbb{R}^{d \times n}$ be a (affine) point(!) configuration and $G=\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{R}^{(n-d-1) \times n}$ a linear Gale transform for V. A projective transformation

$$
T(x)=\frac{A x+b}{c^{t} x+\delta}
$$

(with A non-singular) is admissible for V if $c^{t} v_{i}+\delta>0$ for all $i=1, \ldots, n$.
i) Show that $G^{\prime}=\left(\lambda_{1} g_{1}, \lambda_{2} g_{2}, \ldots, \lambda_{n} g_{n}\right)$ is a Gale transform of $T(V)$ for suitable $\lambda_{1}, \ldots, \lambda_{n}$.
ii) Infer that two polytopes are projectively equivalent if and only if they have the same affine Gale transform.

Exercise 2. A matrix $\bar{G}=\left(\bar{g}_{1}, \bar{g}_{2}, \ldots, \bar{g}_{n}\right) \in \mathbb{R}^{(n-d-2) \times n}$ together with $\sigma \in\{-1,+1\}^{n}$ specifies an affine Gale diagram (\bar{g}_{i} is positive, if $\sigma_{i}>0$).
i) Show that $G^{\prime} \subseteq G$ is a coface if and only if

$$
\operatorname{conv}\left(g_{i} \in G^{\prime}: \sigma_{i}>0\right) \cap \operatorname{conv}\left(g_{i} \in G^{\prime}: \sigma_{i}<0\right) \neq \emptyset
$$

ii) Show that G is an affine Gale diagram of a k-neighborly polytope
\Leftrightarrow i) holds for every $G^{\prime} \subseteq G$ with $\left|G^{\prime}\right|=n-k$
\Leftrightarrow for every affine hyperplane H

$$
\left|G^{+} \backslash H^{-}\right|+\left|G^{-} \backslash H^{+}\right| \geq k+1 .
$$

iii) For $t_{1}<t_{2}<\cdots<t_{n}$ with $n>d>2$, define

$$
\bar{g}_{i}:=\left(t_{i}, t_{i}^{2}, \ldots, t_{i}^{n-d-2}\right)^{t} \quad \text { and } \quad \sigma_{i}=(-1)^{i}
$$

for $i=1,2, \ldots, n$. Show that this gives the affine Gale transform of a d-dimensional $\left\lfloor\frac{d}{2}\right\rfloor$-neighborly polytope on n vertices.
(10 points)
Exercise 3. A set $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\} \subset \mathbb{R}^{d}$ is minimally positively spanning if B is positively spanning but every proper subset is not.
i) Show that $|B| \geq d+1$.
ii) Show that $|B| \leq 2 d$.

For that, phrase this in terms of a Gale transform of B.
iii) Characterize those B for which $|B|=2 d$.

Exercise 4. Let $G=\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{R}^{(n-d-1) \times n}$ be the Gale transform of a d-polytope with n vertices.
i) Show that $G^{\prime}=\left(\frac{1}{2} g_{1}, \frac{1}{2} g_{1}, g_{2}, \ldots, g_{n}\right)$ is the Gale transform of a polytope and determine its combinatorics.
ii) Let $G_{1}=\left(g_{1}, \ldots, g_{n_{1}}\right) \in \mathbb{R}^{\left(n_{1}-d_{1}-1\right) \times n_{1}}$ and $G_{2}=\left(h_{1}, \ldots, h_{n_{2}}\right) \in$ $\mathbb{R}^{\left(n_{2}-d_{2}-1\right) \times n_{2}}$ be the Gale transforms of a d_{1}-polytope P_{1} and a $d_{2^{-}}$ polytope P_{2}, respectively. Describe the polytope for which

$$
G=\left(\begin{array}{cccccc}
g_{1} & \cdots & g_{n_{1}} & 0 & \cdots & 0 \\
0 & \cdots & 0 & h_{1} & \cdots & h_{n_{2}}
\end{array}\right)
$$

is a Gale transform.
(10 points)
Exercise 5. i) Which of the following point configurations are affine Gale diagrams of polytopes? Why, or why not?

ii) Consider the following diagrams. Verify that they are affine Gale diagrams and construct the associated polytopes.

