Discrete Geometry I

Homework \# 9 - due January 16th

For a finite set V, a simplicial complex with vertices in V is $\emptyset \neq \Delta \subseteq 2^{V}$ such that $G \subseteq F \in \Delta$ implies $G \in \Delta$.

Exercise 1. For two (abstract) simplicial complexes $\Delta_{1} \subseteq 2^{V_{1}}, \Delta_{2} \subseteq 2^{V_{2}}$ with $V_{1} \cap V_{2}=\emptyset$, define their join as

$$
\Delta_{1} * \Delta_{2}:=\left\{F_{1} \cup F_{2} \mid F_{1} \in \Delta_{1}, F_{2} \in \Delta_{2}\right\} \subseteq 2^{V_{1} \cup V_{2}}
$$

i) Show that $\Delta_{1} * \Delta_{2}$ is a simplicial complex and that $\operatorname{dim}\left(\Delta_{1} * \Delta_{2}\right)=$ $\operatorname{dim} \Delta_{1}+\operatorname{dim} \Delta_{2}$.
ii) Show that if Δ_{1} and Δ_{2} are pure and strongly connected, then so is their join.
iii) Show that

$$
\mathrm{lk}_{\Delta_{1} * \Delta_{2}}\left(F_{1} \uplus F_{2}\right)=\mathrm{lk}_{\Delta_{1}}\left(F_{1}\right) * \mathrm{lk}_{\Delta_{2}}\left(F_{2}\right)
$$

and infer that the join of Eulerian manifolds is again an Eulerian manifold.
(10 points)
Exercise 2. Let P be a d-polytope. A flag of faces is a chain $\emptyset \neq F_{0} \subset F_{1} \subset \cdots \subset F_{k}$ of non-empty faces $F_{1}, \ldots, F_{k} \in \mathcal{L}(P)$.
i) Show that the collection of all flags forms a pure and strongly connected d-dimensional simplicial complex $\operatorname{sd}(P) \subseteq 2^{\mathcal{L}(P)}$.
For every non-empty face F, let p_{F} be a point in the relative interior of F.
ii) Show that for a chain $\mathcal{F}=\left\{F_{0} \subset F_{1} \subset \cdots \subset F_{k}\right\} \in \operatorname{sd}(P)$

$$
\widehat{\mathcal{F}}:=\operatorname{conv}\left\{p_{F_{0}}, p_{F_{1}}, \ldots, p_{F_{k}}\right\}
$$

is a simplex of dimension $k=\operatorname{dim} \mathcal{F}$.
iii) Show that for every point $p \in P$ there is a unique flag $\mathcal{F} \in \operatorname{sd}(P)$ such that $p \in \operatorname{relint} \widehat{\mathcal{F}}$.
[Hint: Try induction on the dimension and consider faces.]
iv) Infer from iii) that $\{\widehat{\mathcal{F}}: \mathcal{F} \in \operatorname{sd}(P)\}$ is a geometric simplicial complex.

Remark: this simplicial complex is called a barycentric subdivision of P.
(10 points)
(continued on backside)

Exercise 3. Let Δ be a finite simplicial complex.
i) For a nonempty face $F \in \Delta$ show that

$$
\mathrm{lk}_{\Delta}(F)=\{G \backslash F: F \subseteq G, G \in \Delta\}
$$

ii) Show that if Δ is an Eulerian manifold, then Δ is a pseudo-manifold. Is Δ necessarily strongly connected?
[Hint: What is the link of a face of dimension $\operatorname{dim} \Delta-1$?]
Let $\Delta=\mathcal{B}(P)$ be the boundary complex of a simplicial d-polytope.
iii) For a non-empty face $F \in \Delta$, show that

$$
\tilde{\chi}\left(\mathrm{k}_{\Delta}(F)\right)=(-1)^{d-1-\operatorname{dim} F} \chi(P / F)
$$

where P / F is the face figure of $F \subset P$.
[Hint: Consider the relation of $\mathrm{lk}_{\Delta}(F)$ and $\mathcal{L}(P / F)$.]
(10 points)
Exercise 4. Consider the following 2-dimensional simplicial complex Δ on $6(!)$ vertices. (Mind the identifications on the boundary!).

i) Compute $h(\Delta)$.
ii) Is Δ partitionable?
iii) Is Δ shellable?

Exercise 5. (Bonus) Show that every d-dimensional simplicial complex can be embedded in $\mathbb{R}^{2 d+2}$. (Hint: embed it in the boundary of a suitable simplicial $(2 d+2)$ polytope.)

