Discrete Geometry I

Homework # 9 — due January 16th

For a finite set V, a simplicial complex with vertices in V is $\emptyset \neq \Delta \subseteq 2^V$ such that $G \subseteq F \in \Delta$ implies $G \in \Delta$.

Exercise 1. For two (abstract) simplicial complexes $\Delta_1 \subseteq 2^{V_1}$, $\Delta_2 \subseteq 2^{V_2}$ with $V_1 \cap V_2 = \emptyset$, define their *join* as

$$\Delta_1 * \Delta_2 := \{ F_1 \cup F_2 \mid F_1 \in \Delta_1, F_2 \in \Delta_2 \} \subseteq 2^{V_1 \cup V_2}.$$

- i) Show that $\Delta_1 * \Delta_2$ is a simplicial complex and that $\dim(\Delta_1 * \Delta_2) = \dim \Delta_1 + \dim \Delta_2$.
- ii) Show that if Δ_1 and Δ_2 are pure and strongly connected, then so is their join.
- iii) Show that

$$\operatorname{lk}_{\Delta_1 * \Delta_2}(F_1 \uplus F_2) = \operatorname{lk}_{\Delta_1}(F_1) * \operatorname{lk}_{\Delta_2}(F_2)$$

and infer that the join of Eulerian manifolds is again an Eulerian manifold. (10 points)

- **Exercise 2.** Let P be a d-polytope. A flag of faces is a chain $\emptyset \neq F_0 \subset F_1 \subset \cdots \subset F_k$ of non-empty faces $F_1, \ldots, F_k \in \mathcal{L}(P)$.
 - i) Show that the collection of all flags forms a pure and strongly connected d-dimensional simplicial complex $sd(P) \subseteq 2^{\mathcal{L}(P)}$.
 - For every non-empty face F, let p_F be a point in the relative interior of F.
 - ii) Show that for a chain $\mathcal{F} = \{F_0 \subset F_1 \subset \cdots \subset F_k\} \in \mathrm{sd}(P)$

 $\widehat{\mathcal{F}} := \operatorname{conv}\{p_{F_0}, p_{F_1}, \dots, p_{F_k}\}$

is a simplex of dimension $k = \dim \mathcal{F}$.

iii) Show that for every point $p \in P$ there is a unique flag $\mathcal{F} \in \mathrm{sd}(P)$ such that $p \in \mathrm{relint}\,\widehat{\mathcal{F}}$.

[Hint: Try induction on the dimension and consider faces.]

iv) Infer from iii) that $\{\widehat{\mathcal{F}} : \mathcal{F} \in \mathrm{sd}(P)\}$ is a geometric simplicial complex. Remark: this simplicial complex is called a *barycentric subdivision* of P.

(10 points)

(continued on backside)

Exercise 3. Let Δ be a finite simplicial complex.

i) For a nonempty face $F \in \Delta$ show that

 $lk_{\Delta}(F) = \{G \setminus F : F \subseteq G, G \in \Delta\}$

ii) Show that if Δ is an Eulerian manifold, then Δ is a pseudo-manifold. Is Δ necessarily strongly connected?

[Hint: What is the link of a face of dimension $\dim \Delta - 1?]$

- Let $\Delta = \mathcal{B}(P)$ be the boundary complex of a simplicial *d*-polytope.
- iii) For a non-empty face $F \in \Delta$, show that

$$\tilde{\chi}(\operatorname{lk}_{\Delta}(F)) = (-1)^{d-1-\dim F} \chi(P/F)$$

where P/F is the face figure of $F \subset P$.

[Hint: Consider the relation of $lk_{\Delta}(F)$ and $\mathcal{L}(P/F)$.]

(10 points)

Exercise 4. Consider the following 2-dimensional simplicial complex Δ on 6(!) vertices. (Mind the identifications on the boundary!).

- i) Compute $h(\Delta)$.
- ii) Is Δ partitionable?
- iii) Is Δ shellable?

(10 points)

Exercise 5. (Bonus) Show that every *d*-dimensional simplicial complex can be embedded in \mathbb{R}^{2d+2} . (Hint: embed it in the boundary of a suitable simplicial (2d + 2)-polytope.)

(3 points)