Discrete Geometry I

$$
\text { Ho-Ho-Homework \# } 8 \frac{1}{2} \text { — due January 9th }
$$

These are all bonus problems. You may submit solutions to as many problems as you want.

Exercise 1. Find 4-polytopes with the following f-vectors:
i) $(10,30,40,20)$;
ii) $(10,26,27,11)$;
iii) $(10,30,30,10)$
(Hint: Operations such as stacking, join etc. can help you in the first two cases.)

Exercise 2. Consider the following 4-polytopes:

$$
\begin{aligned}
P_{1} & :=\left\{x \in[0,1]^{5} \mid x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=2\right\} \\
P_{2} & :=\left\{x \in[0,1]^{4} \mid 1 \leq x_{1}+x_{2}+x_{3}+x_{4} \leq 2\right\}, \text { and } \\
P_{3} & :=\operatorname{conv}\left(\Delta_{4} \cup \Delta_{4}^{\triangle}\right)
\end{aligned}
$$

where Δ_{4} is a 4-simplex that is edge-tangent to the unit sphere.
i) Show that P_{1} is affinely equivalent to P_{2}.
ii) Show that P_{3} is combinatorially equivalent to P_{1} and P_{2}.
iii) Compute the f-vector of P_{i}. (By hand or using polymake.)
iv) Describe the combinatorial types of facets of P_{i}.

Exercise 3. Let P be a centrally-symmetric d-polytope: $P=-P$. Show that the total number of its non-empty faces is bounded from below as

$$
f_{P}(1):=f_{0}+f_{1}+\ldots+f_{d} \geq 3^{d}
$$

i) for $d=2$ (trivial);
ii) for $d=3$ (interesting);
iii) for $d=4$ (challenging!);
iv) for $d \geq 5$ (open!!).

Exercise 4. i) Write down the Dehn-Sommerville equations for simplicial 5-polytopes.
ii) Compute the f-vector of the cyclic polytope $C_{5}(7)$. (Hint: you know not only the number of vertices, but also the number of edges of this polytope.)
iii) Does there exist a simplicial 5 -polytope with 7 vertices and 13 facets?
($3+3+3$ points)
Exercise 5. Let P be a simple 4-dimensional polytope and consider

$$
K(P):=\sum_{F \subset P \text { facet }}\left(f_{0}(F)-f_{1}(F)+f_{2}(F)\right)
$$

i) Show that $K(P)=2 f_{3}(P)$.
[Hint: What is the value of every summand?]
ii) Expand the sum and interpret each of the 4 sums individually to show that $K(P)=4 f_{0}(P)-3 f_{1}(P)+2 f_{2}(P)$.
iii) Together this gives a linear relation on the f-vector. How is it implied by the Dehn-Sommerville equations?

