Discrete Geometry I

Homework \# 8 - due December 19th

Exercise 1. i) Show that if P is a simple and simplicial d-polytope for $d \geq 3$, then P is a simplex.
ii) Show that there is no 4-polytope with $f_{0}=6$ and $f_{1}=12$. (Hint: Try to infer the f-vector from these data.)
A graph is called k-regular if all of its vertices have degree k. For example, the graph of a simple d-polytope is d-regular.
iii) Give an example of a 4-connected 4-regular graph which is not the graph of a simple 4-polytope. (Hint: 6 vertices suffice.)
(10 points)
Exercise 2. i) For $\operatorname{dim} P=4$ and $f_{0}=6$, describe all possible values of f_{1} and give examples of 4 -polytopes that realize these values.
ii) Construct a 4 -polytope with 8 vertices and 16 edges.
iii) (Bonus) Show that there is no 4 -polytope with 7 vertices and 14 edges.
($10+3$ points)
Exercise 3. Let $P \subset \mathbb{R}^{d}$ be a d-polytope with facets F_{1}, \ldots, F_{m} and correspoding supporting hyperplanes $H_{i}=\left\{x: a_{i}^{t} x=b_{i}\right\}$. A point $q \in \mathbb{R}^{d}$ is beneath F_{i} if $a_{i}^{t} q<b_{i}$ and beyond F_{i} if $a_{i}^{t} q>b_{i}$. Let $k \in[m]$ be fixed.
i) Show that there is a point $q_{k} \in \mathbb{R}^{d}$ such that q_{k} is beyond F_{k} and beneath F_{i} for all $i \neq k$. (Hint: Start from a well chosen point in F_{k})
The operation of stacking a vertex onto the facet F_{k} of P is the polytope

$$
\operatorname{stack}\left(P, F_{k}\right)=\operatorname{conv}\left(P \cup\left\{q_{k}\right\}\right)
$$

where q_{k} is as defined above.
ii) Show that 'stacking a facet' is dual to 'truncating a vertex', i.e.

$$
\operatorname{trunc}(P, v)^{\triangle} \cong \operatorname{stack}\left(P^{\triangle}, v^{\diamond}\right)
$$

In particular, the combinatorial type of $\operatorname{stack}\left(P, F_{k}\right)$ is independent of q_{k}. [Hint: Put P into the 'right position' and use polarity.]
iii) A d-dimensional stacked polytope on n vertices is the ($n-d-1$)-fold stacking of a d-simplex. Show that the f-vector is independent of the stacking order. Give an example of two stacked 3 -polytopes on 7 vertices that are combinatorially distinct.
iv) (Bonus) Can you find a criterion (in dimension 3, say) when two different stacking orders of a d-simplex give combinatorially isomorphic polytopes?
($10+3$ points)

Exercise 4. Consider the following acyclic orientation of the graph of the 3 -cube.

i) Show that the orientation is good. (Hint: You only have to compute a single number.)
ii) Show that this orientation is not induced by a linear function $\ell(x)$ on $C_{3}=$ $[-1,1]^{3}$.
iii) (Bonus) Is there a 3-polytope $P \subset \mathbb{R}^{3}$ and a linear function $\ell(x)$ that induces exactly this orientation?

