Discrete Geometry I

Homework \# 7 - due December 12th

Exercise 1. Let $P \subset \mathbb{R}^{d}$ be a simple polytope and $\ell(x)$ a linear function in general position with respect to P. The h-vector $h(P)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of P can be computed using ℓ : h_{i} is the number of vertices of P with exactly i neighbors with larger value.
i) By choosing a good ℓ show that $h_{i}\left(C_{d}\right)=\binom{d}{i}$ for $0 \leq i \leq d$.
ii) By choosing a good ℓ show that $h_{i}\left(\Delta_{d}\right)=1$ for all i.
iii) Give a geometric interpretation for $h_{1}(P)=f_{d-1}-d$.

Exercise 2. i) Check that the Dehn-Sommerville equations for $d=4$ are equivalent to $f_{0}(P)-f_{1}(P)+f_{2}(P)-f_{3}(P)=0$ and $d f_{0}(P)=2 f_{1}(P)$.
ii) For $d=5$, find a linear relation that follows from the Dehn-Sommerville equations but is independent of the Euler relation and $2 f_{1}(P)=5 f_{0}(P)$.
(10 points)
Exercise 3. Let Δ_{d} be the d-simplex. Let H_{k} be a hyperplane such that $V\left(\Delta_{d}\right) \cap H_{k}=\emptyset$ and $\left|V\left(\Delta_{d}\right) \cap H_{k}^{-}\right|=k+1$ with $0 \leq k \leq d$.
i) Show that $T_{d, k}:=\Delta_{d} \cap H^{-}$is a simple polytope.
ii) Determine the f - and h-polynomial of $T_{d, k}$.
iii) (Bonus) Find the dimension of the affine hull of the f-vectors of $T_{d, i}$.
(10+3 points)
Exercise 4. For $d \geq 1$ and $1 \leq i \leq\left\lfloor\frac{d}{2}\right\rfloor$ let

$$
Q_{d, i}:=\operatorname{prism}^{(d-i)}\left(\Delta_{i}\right)=C_{d-i} \times \Delta_{i}
$$

be the $(d-i)$-fold prism of an i-simplex.
i) Determine the f-polynomial $f_{d, i}(t)$ and h-polynomial $h_{d, i}(t)$ of $Q_{d, i}$ for all i.
ii) Deduce that the there are no linear relations on the f-vectors of simple d-polytopes other than the Dehn-Sommerville equations.
(10 points)

Exercise 5. Let $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d}\right)$ be a permutation of [d]. An index $1 \leq i \leq d$ is a descent, if $\sigma_{i}<\sigma_{i-1}$.

Let $\Pi_{d-1}=\Pi(1,2, \ldots, d)$ be the $(d-1)$-dim permutahedron.
i) Show that $h_{k}\left(\Pi_{d-1}\right)$ is the number $E(n, k)$ of permutations with exactly k descents.
[Hint: Pick a good linear function $\ell(x)$.]
ii) Deduce that $E(d, k)=E(d, d-k+1)$.
iii) (Bonus) Can you determine $f\left(\Pi_{d-1}\right)$ from that knowledge?

