Discrete Geometry I

Homework # 7 — due December 12th

Exercise 1. Let $P \subset \mathbb{R}^d$ be a simple polytope and $\ell(x)$ a linear function in general position with respect to P. The *h*-vector $h(P) = (h_0, h_1, \ldots, h_d)$ of P can be computed using ℓ : h_i is the number of vertices of P with exactly i neighbors with larger value.

- i) By choosing a good ℓ show that $h_i(C_d) = \binom{d}{i}$ for $0 \le i \le d$.
- ii) By choosing a good ℓ show that $h_i(\Delta_d) = 1$ for all i.
- iii) Give a geometric interpretation for $h_1(P) = f_{d-1} d$.

(10 points)

- **Exercise 2.** i) Check that the Dehn-Sommerville equations for d = 4 are equivalent to $f_0(P) f_1(P) + f_2(P) f_3(P) = 0$ and $d f_0(P) = 2f_1(P)$.
 - ii) For d = 5, find a linear relation that follows from the Dehn-Sommerville equations but is independent of the Euler relation and $2f_1(P) = 5f_0(P)$.

(10 points)

Exercise 3. Let Δ_d be the *d*-simplex. Let H_k be a hyperplane such that $V(\Delta_d) \cap H_k = \emptyset$ and $|V(\Delta_d) \cap H_k^-| = k + 1$ with $0 \le k \le d$.

- i) Show that $T_{d,k} := \Delta_d \cap H^-$ is a simple polytope.
- ii) Determine the f- and h-polynomial of $T_{d,k}$.
- iii) (Bonus) Find the dimension of the affine hull of the *f*-vectors of $T_{d.i.}$

(10+3 points)

Exercise 4. For $d \ge 1$ and $1 \le i \le \lfloor \frac{d}{2} \rfloor$ let

$$Q_{d,i} := \operatorname{prism}^{(d-i)}(\Delta_i) = C_{d-i} \times \Delta_i$$

be the (d - i)-fold prism of an *i*-simplex.

- i) Determine the *f*-polynomial $f_{d,i}(t)$ and *h*-polynomial $h_{d,i}(t)$ of $Q_{d,i}$ for all *i*.
- ii) Deduce that the there are no linear relations on the f-vectors of simple d-polytopes other than the Dehn-Sommerville equations.

(10 points)

(continued on backside)

- **Exercise 5.** Let $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_d)$ be a permutation of [d]. An index $1 \le i \le d$ is a *descent*, if $\sigma_i < \sigma_{i-1}$.
 - Let $\Pi_{d-1} = \Pi(1, 2, \dots, d)$ be the (d-1)-dim permutahedron.
 - i) Show that $h_k(\Pi_{d-1})$ is the number E(n,k) of permutations with exactly k descents.

[Hint: Pick a good linear function $\ell(x)$.]

- ii) Deduce that E(d,k) = E(d,d-k+1).
- iii) (Bonus) Can you determine $f(\Pi_{d-1})$ from that knowledge?

(10+3 points)