Discrete Geometry I

Homework # 5 — due November 28

Two weeks time for this sheet. Please mark three problems that will be graded.

Exercise 1. Let $Q = P_1 * P_2$ be the join of two polytopes. Show that

- i) faces of Q are in bijection with joins $F_1 * F_2$ of faces of P_1 and P_2 ;
- ii) $f_Q^0(t) = f_{P_1}^0(t) \cdot f_{P_2}^0(t)$, where $f^0(P) := \sum_{i=-1}^d f_i t^{i+1}$;
- iii) Q^{\triangle} is combinatorially isomorphic to $P_1^{\triangle} * P_2^{\triangle}$.

(10 points)

Exercise 2. i) Let T(x) = Ax be a linear transformation and $P \subset \mathbb{R}^d$ a *d*-polytope with $0 \in int(P)$. Show that

$$T(P)^{\triangle} = T^*(P^{\triangle})$$

where $T^*(x) = (A^t)^{-1}x$.

- ii) Let $P, Q \subset \mathbb{R}^d$ polytopes with relint $(P) \cap \text{relint}(Q) = \{0\}$ and let $P \oplus Q = \text{conv}(P \cup Q)$ be their direct sum. Show that $(P \oplus Q)^{\triangle}$ is affinely isomorphic to $P^{\triangle} \times Q^{\triangle}$.
- iii) Let $P \times Q$ be a product of polytopes and $(u, v) \in V(P \times Q)$ a vertex. What is the vertex figure $(P \times Q)/(u, v)$ in terms of the vertex figures P/u and Q/v?

(10 points)

- **Exercise 3.** i) Show that the direct sum is a projection of the join.
 - ii) Show that the product is a section of the join.
 - iii) Show that the cyclic polytope $C_4(6)$ is the direct sum of two triangles.

(10 points)

Exercise 4. Can (12, 31, 30, 11) be the *f*-vector of

- i) a simple/simplicial polytope?
- ii) a prism?
- iii) a pyramid?
- iv) a join?
- v) (Bonus) any polytope?

(10 points) (continued on backside)

- **Exercise 5.** For a polyhedron $Q \subset \mathbb{R}^d$, the definition of vertex-edge-graph G(Q) of Q makes sense. But G(Q) might have no vertices (e.g., if Q is not pointed) or might not have edges (e.g., if Q is a pointed cone). Let Q be a pointed unbounded polyhedron with at least two vertices.
 - i) Show that G(Q) is connected.
 - ii) Give an example of a 3-dimensional polyhedron whose graph is not 2connected.
 - iii) What about higher dimensions?

(10 points)

Exercise 6. Define the Cartesian product of two graphs $\Gamma_1 = (V_1, E_1)$ and $\Gamma_2 = (V_2, E_2)$ as $\Gamma_1 \times \Gamma_2 = (V_1 \times V_2, E)$, where two vertices (v_1, v_2) and (w_1, w_2) are adjacent $\Leftrightarrow (v_1 = w_1 \text{ and } v_2 \text{ is adjacent to } w_2 \text{ in } \Gamma_2)$ or $(v_2 = w_2 \text{ and } v_1 \text{ is adjacent to } w_1 \text{ in } \Gamma_1)$.

- i) Let Γ_1 and Γ_2 be the graphs of polytopes P_1 and P_2 , respectively. Show that $\Gamma_1 \times \Gamma_2$ is the graph of $P_1 \times P_2$.
- ii) Give an example of a Cartesian product $\Gamma = \Gamma_1 \times \Gamma_2$, where Γ and Γ_1 are graphs of polytopes, but Γ_2 is not.
- iii) (Bonus) Can you find two graphs Γ_1, Γ_2 that are both not graphs of polytopes but $\Gamma_1 \times \Gamma_2$ is?

(10+3 points)

Exercise 7. Let $P = \{x \in \mathbb{R}^d : Ax \leq b\}$ be a bounded, possibly empty polyhedron such that $A \in \mathbb{R}^{m \times d}$ has full rank d. Consider the polyhedron

$$\hat{P} = \{(x,t) \in \mathbb{R}^{d+1} : Ax + t \, b \le b, 0 \le t \le 1\}$$

- i) Show that $v = (0, 0, \dots, 0, 1)$ is a vertex of \widehat{P} .
- ii) Show that a vertex $(u,t) \in V(\widehat{P})$ corresponds to a vertex of P iff t = 0.
- iii) Let $(p_0, t_0) \in \widehat{P}$ be a point with t_0 minimal. Deduce that $P = \emptyset$ iff $t_0 > 0$. (10 points)