Dr. Ivan Izmestiev

Discrete Geometry I

Homework \# 5-due November 28

Two weeks time for this sheet. Please mark three problems that will be graded.

Exercise 1. Let $Q=P_{1} * P_{2}$ be the join of two polytopes. Show that
i) faces of Q are in bijection with joins $F_{1} * F_{2}$ of faces of P_{1} and P_{2};
ii) $f_{Q}^{0}(t)=f_{P_{1}}^{0}(t) \cdot f_{P_{2}}^{0}(t)$, where $f^{0}(P):=\sum_{i=-1}^{d} f_{i} t^{i+1}$;
iii) Q^{\triangle} is combinatorially isomorphic to $P_{1}^{\triangle} * P_{2}^{\triangle}$.

Exercise 2. i) Let $T(x)=A x$ be a linear transformation and $P \subset \mathbb{R}^{d}$ a d-polytope with $0 \in \operatorname{int}(P)$. Show that

$$
T(P)^{\triangle}=T^{*}\left(P^{\triangle}\right)
$$

where $T^{*}(x)=\left(A^{t}\right)^{-1} x$.
ii) Let $P, Q \subset \mathbb{R}^{d}$ polytopes with $\operatorname{relint}(P) \cap \operatorname{relint}(Q)=\{0\}$ and let $P \oplus Q=$ $\operatorname{conv}(P \cup Q)$ be their direct sum. Show that $(P \oplus Q)^{\triangle}$ is affinely isomorphic to $P^{\triangle} \times Q^{\triangle}$.
iii) Let $P \times Q$ be a product of polytopes and $(u, v) \in V(P \times Q)$ a vertex. What is the vertex figure $(P \times Q) /(u, v)$ in terms of the vertex figures P / u and Q / v ?
(10 points)
Exercise 3. i) Show that the direct sum is a projection of the join.
ii) Show that the product is a section of the join.
iii) Show that the cyclic polytope $C_{4}(6)$ is the direct sum of two triangles.
(10 points)
Exercise 4. Can $(12,31,30,11)$ be the f-vector of
i) a simple/simplicial polytope?
ii) a prism?
iii) a pyramid?
iv) a join?
v) (Bonus) any polytope?

Exercise 5. For a polyhedron $Q \subset \mathbb{R}^{d}$, the definition of vertex-edge-graph $G(Q)$ of Q makes sense. But $G(Q)$ might have no vertices (e.g., if Q is not pointed) or might not have edges (e.g., if Q is a pointed cone). Let Q be a pointed unbounded polyhedron with at least two vertices.
i) Show that $G(Q)$ is connected.
ii) Give an example of a 3-dimensional polyhedron whose graph is not 2connected.
iii) What about higher dimensions?

Exercise 6. Define the Cartesian product of two graphs $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ as $\Gamma_{1} \times \Gamma_{2}=\left(V_{1} \times V_{2}, E\right)$, where two vertices $\left(v_{1}, v_{2}\right)$ and $\left(w_{1}, w_{2}\right)$ are adjacent $\Leftrightarrow\left(v_{1}=w_{1}\right.$ and v_{2} is adjacent to w_{2} in $\left.\Gamma_{2}\right)$ or $\left(v_{2}=w_{2}\right.$ and v_{1} is adjacent to w_{1} in $\left.\Gamma_{1}\right)$.
i) Let Γ_{1} and Γ_{2} be the graphs of polytopes P_{1} and P_{2}, respectively. Show that $\Gamma_{1} \times \Gamma_{2}$ is the graph of $P_{1} \times P_{2}$.
ii) Give an example of a Cartesian product $\Gamma=\Gamma_{1} \times \Gamma_{2}$, where Γ and Γ_{1} are graphs of polytopes, but Γ_{2} is not.
iii) (Bonus) Can you find two graphs Γ_{1}, Γ_{2} that are both not graphs of polytopes but $\Gamma_{1} \times \Gamma_{2}$ is?
(10+3 points)
Exercise 7. Let $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ be a bounded, possibly empty polyhedron such that $A \in \mathbb{R}^{m \times d}$ has full rank d. Consider the polyhedron

$$
\widehat{P}=\left\{(x, t) \in \mathbb{R}^{d+1}: A x+t b \leq b, 0 \leq t \leq 1\right\}
$$

i) Show that $v=(0,0, \ldots, 0,1)$ is a vertex of \widehat{P}.
ii) Show that a vertex $(u, t) \in V(\widehat{P})$ corresponds to a vertex of P iff $t=0$.
iii) Let $\left(p_{0}, t_{0}\right) \in \widehat{P}$ be a point with t_{0} minimal. Deduce that $P=\emptyset$ iff $t_{0}>0$.

