## Discrete Geometry I

## Homework \# 4 - due November 14th

Exercise 1. Let $P$ be a polytope with vertices $v_{1}, \ldots, v_{n}$ and facets $F_{1}, \ldots, F_{m}$. The vertexfacet incidence matrix is given by $M=M(P) \in\{0,1\}^{m \times n}$ with $M_{i j}=1$ iff $v_{j} \in F_{i}$.
i) What does $M\left(P^{\triangle}\right)$ look like?
ii) How can you tell from $M$ if $P$ is simple or simplicial?
iii) How can you reconstruct the face lattice $\mathcal{L}(P)$ from $M$ ? Can you determine the dimension of $P$ from $M$ ?

Exercise 2. Two polytopes $P_{1}, P_{2}$ are called combinatorially isomorphic if their face lattices are isomorphic.
i) Find two simplicial 3 -polytopes with 6 vertices each that are not combinatorially isomorphic.
ii) Find two combinatorially non-isomorphic 3 -polytopes $P_{1}$ and $P_{2}$ with the same sets of vertex figures. More exactly, there must exist a bijection $\iota: V_{1} \rightarrow V_{2}$ between the vertex sets of $P_{1}$ and $P_{2}$ such that the vertex figure of $v$ is combinatorially isomorphic to the vertex figure of $\iota(v)$, for all $v \in V_{1}$.
iii) Find two combinatorially non-isomorphic 4-polytopes $P_{1}$ and $P_{2}$ with the same sets of vertex figures.
(10 points)
Exercise 3. A full-dimensional polytope $P \subset \mathbb{R}^{d}$ is called inscribed in the unit sphere if $\|v\|=1$ for all vertices $v \in V(P)$ and circumscribed if every facet $F \subset P$ contains a unique $p \in \operatorname{relint} F$ with $\|p\|=1$. Assume that $0 \in \operatorname{int} P$.
i) Show that if $P$ is inscribed in the unit sphere, then $P^{\triangle}$ is circumscribed.
ii) A face $F$ of $P$ is called tangent to the unit sphere if $\min _{x \in F}\|x\|=1$. Show: if all $k$-dimensional faces of $P$ are tangent to the unit sphere, then all ( $d-k-1$ )-dimensional faces of $P^{\triangle}$ are also tangent to the unit sphere.
iii) Assume tht all $k$-faces are tangent to the unit sphere. Show that $P \cap P^{\triangle}$ is inscribed in the unit sphere and $\operatorname{conv}\left(P \cup P^{\triangle}\right)$ is circumscribed about it.

Exercise 4. Let $P$ be a $d$-dimensional polytope.
i) Show that among the vertices of $P$ one can choose $d+1$ whose join in the face lattice (i. e. the smallest face containing all of them) is $P$.
ii) Show that among the facets of $P$ one can choose $d+1$ whose intersection is empty.
iii) Let $-1 \leq k<h \leq d-1$. Show that for every $k$-face $F$ of $P$ one can find $h-k+1$ faces of dimension $h$ whose intersection is $F$. (Hint: Start with the case $h=d-1$.)

