Discrete Geometry I

Homework # 4 — due November 14th

Exercise 1. Let P be a polytope with vertices v_1, \ldots, v_n and facets F_1, \ldots, F_m . The vertexfacet incidence matrix is given by $M = M(P) \in \{0, 1\}^{m \times n}$ with $M_{ij} = 1$ iff $v_j \in F_i$.

- i) What does $M(P^{\triangle})$ look like?
- ii) How can you tell from M if P is simple or simplicial?
- iii) How can you reconstruct the face lattice $\mathcal{L}(P)$ from M? Can you determine the dimension of P from M?

(10 points)

Exercise 2. Two polytopes P_1, P_2 are called *combinatorially isomorphic* if their face lattices are isomorphic.

- i) Find two simplicial 3-polytopes with 6 vertices each that are not combinatorially isomorphic.
- ii) Find two combinatorially non-isomorphic 3-polytopes P_1 and P_2 with the same sets of vertex figures. More exactly, there must exist a bijection $\iota: V_1 \to V_2$ between the vertex sets of P_1 and P_2 such that the vertex figure of v is combinatorially isomorphic to the vertex figure of $\iota(v)$, for all $v \in V_1$.
- iii) Find two combinatorially non-isomorphic 4-polytopes P_1 and P_2 with the same sets of vertex figures.

(10 points)

Exercise 3. A full-dimensional polytope $P \subset \mathbb{R}^d$ is called *inscribed* in the unit sphere if ||v|| = 1 for all vertices $v \in V(P)$ and *circumscribed* if every facet $F \subset P$ contains a unique $p \in \operatorname{relint} F$ with ||p|| = 1. Assume that $0 \in \operatorname{int} P$.

i) Show that if P is inscribed in the unit sphere, then P^{\bigtriangleup} is circumscribed.

- ii) A face F of P is called tangent to the unit sphere if $\min_{x \in F} ||x|| = 1$. Show: if all k-dimensional faces of P are tangent to the unit sphere, then all (d-k-1)-dimensional faces of P^{\triangle} are also tangent to the unit sphere.
- iii) Assume tht all k-faces are tangent to the unit sphere. Show that $P \cap P^{\triangle}$ is inscribed in the unit sphere and $\operatorname{conv}(P \cup P^{\triangle})$ is circumscribed about it. (10 points)

(continued on backside)

Exercise 4. Let *P* be a *d*-dimensional polytope.

- i) Show that among the vertices of P one can choose d+1 whose join in the face lattice (i. e. the smallest face containing all of them) is P.
- ii) Show that among the facets of P one can choose d + 1 whose intersection is empty.
- iii) Let $-1 \le k < h \le d-1$. Show that for every k-face F of P one can find h-k+1 faces of dimension h whose intersection is F. (Hint: Start with the case h = d 1.)

(10 points)