Discrete Geometry I

Homework \# 3 - due November 7th

Please work in pairs. Try to solve all the problems but mark two solutions. Only these will be graded. You can earn 20 points on every homework sheet (10 per exercise). You can get extra credit by solving the bonus problems. State who wrote up the solution.

Exercise 1. Let $C=\left\{x \in \mathbb{R}^{d}: a_{i}^{t} x \leq 0 \quad i=1, \ldots, m\right\}$ be a convex polyhedral cone.
i) Show that if $C \cup(-C)=\mathbb{R}^{d}$, then $C=\mathbb{R}^{d}$ or C is a halfspace.
ii) Infer that, if C is bounded by $m \geq 2$ irredundant halfspaces, then any $r \notin C \cup(-C)$ has the property that $a_{i}^{t} r \neq 0$ for all i and $a_{j}^{t} r>0$ and $a_{k}^{t} r<0$ for some j, k.
(10 points)
Exercise 2. Let $C=\operatorname{cone}(U) \subseteq \mathbb{R}^{d}$ be a convex polyhedral cone (U finite).
i) Prove that C is pointed if and only if 0 is a face, that is, $C \cap H=\{0\}$ for some supporting hyperplane $H=\left\{x: c^{t} x=0\right\}$.
ii) With this hyperplane show that $C_{p}=C \cap(p+H)$ is a polytope for any $p \in C \backslash\{0\}$.
iii) Deduce that there is a unique inclusion-minimal subset $U^{\prime} \subseteq U$ such that $C=\operatorname{cone}(U)$.
(10 points)
Exercise 3. i) Let $Q=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ be a polyhedron. Show that lineal $(Q)=$ $\operatorname{ker} A$.
ii) Let $K \subset \mathbb{R}^{d}$ be a closed convex set and $L:=\operatorname{lineal}(K)$. Show that for any point $p \in K$ the convex set $\overline{K_{p}}:=K \cap\left(p+L^{\perp}\right)$ is pointed and that $K=\overline{K_{p}}+L$.
(10 points)
Exercise 4. Let $A, B \subseteq \mathbb{R}^{d}$ be convex polyhedral cones. Show that
i) $A \subseteq B \Rightarrow A^{\circ} \supseteq B^{\circ}$
ii) $(A \cup B)^{\circ}=A^{\circ} \cap B^{\circ}$
iii) If A is a linear subspace of \mathbb{R}^{d}, then $A^{\circ}=A^{\perp}$.
iv) A is pointed if and only if A° is full-dimensional (i.e. $\operatorname{dim} A=d$).
(10 points)
(continued on backside)

Exercise 5. Let $C \subset \mathbb{R}^{d}$ be a full dimensional convex polyhedral cone and let $\mathbb{R}_{\geq 0}^{m}=\{x \in$ $\mathbb{R}^{m}: x_{i} \geq 0$ for all $\left.i=1, \ldots, m\right\}$.
i) Show that there is an n and a linear map $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ such that $C=$ $\pi\left(\mathbb{R}_{\geq 0}^{n}\right)$.
ii) Let $\pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{e}$ be a surjective linear map (a projection) and let $L=\operatorname{ker} \pi$. Show that

$$
\pi(C)^{\circ} \cong C^{\circ} \cap L^{\perp}
$$

iii) Show that there is some $m \geq 0$ and a linear subspace $L \subseteq \mathbb{R}^{m}$ such that C is linearly isomorphic to $\mathbb{R}_{\geq 0}^{m} \cap L$.

