Discrete Geometry I

Homework \# 2 - due October 31th

Please work in pairs. Try to solve all the problems but mark two solutions. Only these will be graded. You can earn 20 points on every homework sheet (10 per exercise). You can get extra credit by solving the bonus problems. State who wrote up the solution.

Please write your full name, student id (Matrikel nummer), semester and 'category' (e.g. Math, computer science; MSc, BSc, Diplom).

Exercise 1. i) Let P be a k-neighborly polytope with the vertex set \mathcal{V}. Show that for every $\mathcal{V}^{\prime} \subset \mathcal{V}$ the convex hull $\operatorname{conv}\left(\mathcal{V}^{\prime}\right)$ is also k-neighborly.
ii) Show using the Radon Lemma: if in a 3-dimensional polytope each pair of vertices is joined by an edge, then this polytope is a simplex.
iii) Prove that in a k-neighborly polytope every $(2 k-1)$-face is a simplex.
(10 points)
Exercise 2. For $d<n$ and $r_{1}<r_{2}<\cdots<r_{n}$ let

$$
C=\operatorname{Cyc}_{d}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\operatorname{conv}\left\{\gamma_{d}\left(r_{i}\right): i=1,2, \ldots, n\right\}
$$

be a cyclic polytope. Here $\gamma_{d}(t)=\left(t, t^{2}, \ldots, t^{d}\right)^{t} \in \mathbb{R}^{d}$.
i) For a subset $I \subseteq[n]$ an element $j \notin I$ is an odd or even gap if the number $|\{i \in I: i<j\}|$ is odd or even, respectively.
Show that for $I \subseteq[n]$ with $|I|=d$ we have that

$$
F_{I}=\operatorname{conv}\left\{\gamma_{d}\left(r_{i}\right): i \in I\right\}
$$

is a facet of C if and only if all gaps of I are either even or odd.
ii) Assume that d is even. Let $F \subset C$ be a facet and $H=\left\{a^{t} x=b\right\}$ its (unique) supporting hyperplane. F is called a lower facet with respect to the coordinate direction x_{d} if $a_{d}<0$. Show that $F=F_{I}$ is lower if and only if I has only even gaps.
iii) (Bonus) What is the number (closed formula!) of facets $f_{d-1}(C)$? What is the number of k-faces?

Exercise 3. For $n \geq 3$ let

$$
P_{n}=\operatorname{conv}\left\{\left(\cos \frac{2 \pi k}{n}, \sin \frac{2 \pi k}{n}\right): k=1,2, \ldots, n\right\} \subset \mathbb{R}^{2}
$$

be the regular n-gon.
i) Show that if n is even, then P_{n} is a zonotope, that is,

$$
P_{n}=\left[w_{1}, z_{1}\right]+\left[w_{2}, z_{2}\right]+\cdots+\left[w_{m}, z_{m}\right]
$$

for some $w_{1}, z_{1}, \ldots, w_{m}, z_{m} \in \mathbb{R}^{2}$.
ii) (Bonus) Can the regular 9-gon be represented as the Minkowski sum of a triangle and a hexagon? Can the regular 7-gon be represented as the Minkowski sum of two polygons that are not similar to each other?

Exercise 4. Recall that for $a=\left(a_{1} \geq a_{2} \geq \cdots \geq a_{d}\right)$, the generalized permutahedron is defined by
$\Pi_{d-1}(a)=\operatorname{conv}\left\{\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(d)}\right): \pi\right.$ permutation of $\left.[d]\right\}$
i) Give an example of a such that $a_{i} \neq a_{j}$ for all $i \neq j$ and $\Pi_{d-1}(a)$ is not a zonotope. (Hint: $d=3$ suffices.)
ii) Prove that if $a_{1} \geq a_{2} \geq \cdots \geq a_{d}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{d}$, then

$$
a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{d} b_{d} \geq a_{1} b_{\pi(1)}+a_{2} b_{\pi(2)}+\cdots+a_{d} b_{\pi(d)}
$$

for every permutation π of $[d]$.
From here on assume that $a=\left(a_{1}>a_{2}>\cdots>a_{d}\right)$.
iii) For a permutation π, denote by $\pi(a)=\left(a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(d)}\right)$. Show that $[a, \pi(a)]=\operatorname{conv}\{a, \pi(a)\}$ is an edge of $\Pi_{d-1}(a)$ if π is an adjacent transposition, that is, $\pi(a)=\left(a_{1}, \ldots, a_{i+1}, a_{i}, \ldots, a_{d}\right)$ for some $1 \leq i<d$. Deduce that $\Pi_{d-1}(a)$ is simple.

