Discrete Geometry I

Homework \# 1 - due October 24th

Please work in pairs. Try to solve all the problems but mark two solutions. Only these will be graded. You can earn 20 points on every homework sheet (10 per exercise). You can get extra credit by solving the bonus problems. State who wrote up the solution.

Please write your full name, student id (Matrikel nummer), semester. and 'category' (e.g. Math, computer science; MSc, BSc, Diplom).

Exercise 1. Let P_{1} and P_{2} be polytopes.
i) Show that for every pair of faces $F_{1} \subseteq P_{1}, F_{2} \subseteq P_{2}$ their product $F_{1} \times F_{2}$ is a face of $P_{1} \times P_{2}$. And conversely, for every non-empty face F of P there are unique faces $F_{1} \subseteq P_{1}$ and $F_{2} \subseteq P_{2}$ such that $F=F_{1} \times F_{2}$.
ii) Let $\pi: P \rightarrow Q$ be a projection of polytopes. Show that $\pi^{-1}(F)$ is a face of P for every face $F \subseteq Q$.
iii) Show that if $K_{1}, K_{2} \subseteq \mathbb{R}^{d}$ are convex, then so is $K_{1}+K_{2}$. Stronger even, show that $P+Q$ is a polytope whenever P and Q are.
[Bonus: Show that the reverse is also true: if the Minkowski sum of two convex sets is a polytope, then both summands are polytopes.]
iv) Show that if $F \subseteq P_{1}+P_{2}$ is a face, then $F=F_{1}+F_{2}$ for some faces $F_{i} \subseteq P_{i}$. Show that F_{1} and F_{2} are unique.
(10+3 points)
Exercise 2. Let $C_{d}=[-1,+1]^{d}$ be the d-cube.
i) For every vector $c \in \mathbb{R}^{d}$, describe the face maximizing $\ell(x)=c^{t} x$. In particular, which face of the eight-dimensional cube maximizes the scalar product with the vector $c=(1,-7,1,0,2,0,1,-2)^{t}$?
ii) Establish a bijection r between non-empty faces of C_{d} and the set $\{-, 0,+\}^{d}$. Show that

$$
\operatorname{dim} F=\#\left\{i: r(F)_{i}=0\right\}
$$

and give a formula for the number f_{i} of i-dimensional faces of C_{d}.
(10 points)

Exercise 3. i) The d-dimensional crosspolytope is

$$
C_{d}^{\triangle}=\operatorname{conv}\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{d}\right\}
$$

For any $u, v \in\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{d}\right\}$ show that $[u, v]=\operatorname{conv}\{u, v\}$ is an edge of C_{d}^{\triangle} if $u \neq \pm v$.
ii) A polytope P is centrally-symmetric if $-P=P$. Show that $P=\operatorname{conv}(V)$ is centrally symmetric if and only if P is a projection of the n-dim'l crosspolytope C_{n}^{\triangle} with $n=\frac{1}{2}|V|$.
iii) (Bonus) Let $P=\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a d-polytope.

For a point $p \in \operatorname{int} P$ show that $p \in \operatorname{int} \operatorname{conv}\left(V^{\prime}\right)$ for a subset $V^{\prime} \subseteq V(P)$ of cardinality $\leq 2 \cdot \operatorname{dim} P$. Show that there are polytopes and points for which this bound is sharp.

The computer program polymake allows to analyze combinatorial properties of polytopes. It is called on UNIX-computers at FU by the command line

> /import/polymake/bin/polymake

An introduction tutorial for polymake can be found at

> http://polymake.org/doku.php/tutorial/intro_tutorial

Exercise 4. The permutahedron $\Pi_{d-1} \subset \mathbb{R}^{d}$ is defined as the convex hull of all vectors obtained by permuting the coordinates of the vector $(1,2, \ldots, d)^{t}$. In polymake, Π_{3} is denoted by permutahedron(4).

Let $a_{1} \geq a_{2} \geq a_{3} \geq a_{4}$ be real numbers. The generalized permutahedron (or orbit polytope) $\Pi_{3}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ is the convex hull of all the vectors in \mathbb{R}^{4} given by permutations of the coordinates $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)^{t}$.
i) Using polymake, compute the f-vector of Π_{3}. Does this tell you the dimension of Π_{3} ? Why does Π_{3} have this dimension?
ii) Study the f-vectors of generalized permutahedra $\Pi_{3}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ experimentally. What are the 6 possible f-vectors? What are the possible numbers of vertices of $\Pi_{3}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$?
Data of a polytope can be entered by the command

$$
\$ p=l o a d(' y o u r f i l e ') ;
$$

where yourfile can be a plain text file looking as

POINTS

$1 a_{1} a_{2} a_{3} a_{4}$
$1 a_{1} a_{2} a_{4} a_{3}$
iii) What are possible values of $\operatorname{dim} \Pi_{3}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, and what are the corresponding conditions on ($a_{1}, a_{2}, a_{3}, a_{4}$)?
iv) Show that $\Pi_{3}(-1,-1,1,1)$ is linearly isomorphic to the octahedron (or 3-dimensional crosspolytope; See Exercise 3).

