Institut für Mathematik

Prof. Raman Sanyal

Dr. Arnau Padrol

Discrete Geometry I

Homework # 13 — due February 4th

Please mark one of the exercises (but try to solve all of them). State who wrote the solution.

Exercise 1. Let $\mathcal{H} = \{H_1, \dots, H_n\}$ be an arrangement of n distinct linear hyperplanes in \mathbb{R}^d and define the following arrangements of n-1 hyperplanes in \mathbb{R}^d and \mathbb{R}^{d-1} , respectively:

$$\mathcal{H} \setminus H_1 = \{H_2, \dots, H_n\}$$

$$\mathcal{H}|_{H_1} = \{H_1 \cap H_2, \dots, H_1 \cap H_n\}.$$

i) Let $r(\mathcal{H})$ be the number of full-dimensional regions of \mathcal{H} . Prove that

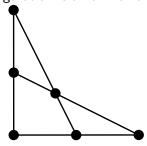
$$\mathsf{r}(\mathcal{H}) = \mathsf{r}(\mathcal{H} \setminus H_1) + \mathsf{r}(\mathcal{H}|_{H_1}).$$

ii) What is the maximal number of vertices that a zonotope on n segments in \mathbb{R}^d can have?

(10 points)

Exercise 2. Let $\bar{Z}=(\bar{z}_1,\ldots,\bar{z}_n)\in\mathbb{R}^{(n-d)\times n}$ be the **zonal diagram** of a d-zonotope $\mathcal{Z}=\sum [-z_i,z_i].$

- i) Explain the effect of replacing \bar{z}_i by $-\bar{z}_i$ in a zonal diagram.
- ii) Let $c\in\mathbb{R}^{n-d}$ be a generic vector (such that $c^t\bar{z}_i\neq 0$ for all $i\in[n]$). By (i), we can assume without loss of generality that $c^t\bar{z}_i>0$ for all $i\in[n]$. Let $\tilde{z}_i=\frac{\bar{z}_i}{c^t\bar{z}_i}$. We can identify $\tilde{Z}=(\tilde{z}_1,\ldots,\tilde{z}_n)$ with an ordered collection of n vectors in \mathbb{R}^{n-d-1} . (\tilde{Z} is called the **affine zonal diagram** of \mathcal{Z} .) For $J=(J^+,J^-)$ (with $J^+,J^-\subseteq[n]$, $J^+\cap J^-=\emptyset$) give a necessary and sufficient condition for F(J) being a face of \mathcal{Z} in terms of \tilde{Z} .
- iii) When is \mathcal{Z} a simple polytope (in terms of \tilde{Z})?
- iv) The following point configuration is an affine zonal diagram.



Compute the f-vector of \mathcal{Z} .

v) [Bonus:] Draw the graph of \mathcal{Z} .

(10+3 points)

Bonus Exercise 1. Find a shelling for the boundary complex of the d-crosspolytope and compute its h-vector.

(+5 points)

Bonus Exercise 2. Assume for the moment that

$$f = f(P) = (1, 15, 34, 28, 9, 1)$$

is the f-vector of a polytope P.

- i) What is the dimension of P?
- ii) Is P simple or simplicial?
- iii) Could P be a prism?
- iv) Could P be a product of polytopes?
- v) Could P be a direct sum of polytopes (that contain the origin)?
- vi) Could P be a pyramid?
- vii) Could P be a join?
- viii) Could P be a stacked polytope?
- ix) Could P be a truncation polytope?
- x) Could P be a neighborly polytope?

(+10 points)