Institut für Mathematik

Prof. Raman Sanyal

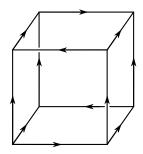
Dr. Arnau Padrol

Discrete Geometry I

Homework # 9 — due January 7th

Please mark **three** of the exercises (but try to solve all of them). State who wrote the solution.

Exercise 1. Consider the following acyclic orientation of the graph of the 3-cube $C_3 = [0,1]^3$.



- i) Show that the orientation \mathcal{O} is good.
- ii) Show that there is no $c\in\mathbb{R}^3$ such that $\mathcal{O}=\mathcal{O}_c$. [Bonus: Is there a 3-polytope combinatorially isomorphic to C_3 such that $\mathcal{O}=\mathcal{O}_c$?]
- iii) An orientation $\mathcal O$ is called a **unique sink orientation** (USO) of G(P), if G(F) has a unique sink for every face $F\subset P$. Is every USO also acyclic?

(10+3 points)

Exercise 2. Consider the graph G = G(P) = (V, E) of a simple 4-polytope P with vertices $V = \{0, \dots, 8\}$ and edges

$$E = \{(0,1), (0,2), (0,4), (0,7), (1,2), (1,5), (1,8), (2,3), (2,6), (3,4), (3,5), (3,6), (4,5), (4,7), (5,8), (6,7), (6,8), (7,8)\}.$$

- i) $\ ^{\bullet}$ What is s(P), the total number of nonempty faces of P?
- ii) $^{\bullet}$ Let G_1 and G_2 be the subgraphs of P induced by the vertex sets $V_1 = \{0, 1, 4, 5, 7, 8\}$ and $V_2 = \{0, 1, 2, 3, 5, 7, 8\}$, respectively. Are G_1 and G_2 subgraphs corresponding to facets of P?

You can find these graphs at:

http://page.mi.fu-berlin.de/sanyal/teaching/dg1/Hw9Ex2.sws

(10 points)

Exercise 3. Let $C \subset \mathbb{R}^d$ be a pointed cone.

- i) Show that there is a hyperplane H such that for every k-face $F \subset C$ we have that $H \cap F$ is a polytope of dimension k-1.
- ii) Show that

$$\chi(C) := \sum_{i>0} (-1)^i f_i(C) = 0.$$

iii) [Bonus: What is $\chi(Q)$ for a nonempty polyhedron Q?]

(10+3 points)

Exercise 4. Let P be a simple (d-1)-polytope. Let $P' = \operatorname{prism}(P) := P \times [0,1]$ be the prism over P.

i) Show that $h_i(P') = h_i(P) + h_{i-1}(P)$ for i = 0, ..., d+1 only using orientations on graphs. (Here, $h_{-1}(P) = h_d(P) = 0$.)

Let d=2m be even and for $0 \le i \le m$ define $Q_i^d := \operatorname{prism}^{d-2i}(\Delta_{2i})$, the (d-2i)-fold prism over the 2i-dimensional simplex.

- ii) Compute the h-vector of Q_i^d .
- iii) Show that the h-vectors $(h(Q_i^d): 0 \le i \le \lfloor \frac{d}{2} \rfloor)$ are affinely independent.

(10 points)

- **Exercise 5.** i) Show that if P is a simple and simplicial d-polytope for $d \ge 3$, then P is a simplex.
 - ii) Show that there is no 4-polytope with $f_0=6$ and $f_1=12$. [Hint: Try to infer the f-vector from this data.]
 - iii) Give an example of a 4-connected 4-regular graph which is not the graph of a simple 4-polytope. [Hint: 6 vertices suffice.]

(10 points)

Exercise 6. Let P be a simple 4-dimensional polytope and consider

$$K(P) := \sum_{F \subset P \text{ facet}} (f_0(F) - f_1(F) + f_2(F))$$

- i) Show that $K(P) = 2f_3(P)$.
- ii) Expand the sum and interpret each of the 4 sums individually to show that $K(P)=4f_0(P)-3f_1(P)+2f_2(P).$
- iii) Together this gives a linear relation on the f-vector. How is it implied by the Dehn-Sommerville equations?

(10 points)

Bonus Exercise 1. Let $P \subset \mathbb{R}^d$ be a d-polytope with vertices v_1, \ldots, v_n . Let G = ([n], E) be the graph with $ij \in E$ if $[v_i, v_j]$ is a face of P.

i) Define the zonotope $Z_P \subset \mathbb{R}^d$ as

$$Z_P := \sum_{ij \in E} [v_i - v_j, v_j - v_i].$$

Prove that the vertices of Z_P are in bijection with the orientations \mathcal{O}_c for $c \in \mathbb{R}^d$ general with respect to P.

ii) Define the zonotope $Z_G \subset \mathbb{R}^n$ by

$$Z_G := \sum_{ij \in E} [e_i - e_j, e_j - e_i].$$

Prove that the vertices of Z_G are in bijection with acyclic orientations of G.

- iii) Prove that Z_P is a projection of Z_G .
- iv) Prove that the permutahedron Π_{d-1} is affinely equivalent to Z_G for some graph G.
- v) Compute the *h*-vector of Π_{d-1} .

(+3+3+1+3+3 points)

Bonus Exercise 2. Let P be a centrally-symmetric d-polytope, that is, P=-P. Show that

$$s(P) := f_0 + f_1 + \dots + f_d \ge 3^d$$

- i) for d = 2 (trivial);
- ii) for d = 3 (interesting);
- iii) for d = 4 (challenging!);
- iv) for $d \geq 5$ (open!!).

(+3+9+27+81 points)