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Please mark three of the exercises (but try to solve all of them). State who wrote the

solution.

Exercise 1. Consider the following acyclic orientation of the graph of the 3-cube C3 =

[0, 1]3.

i) Show that the orientation O is good.

ii) Show that there is no c ∈ R3 such that O = Oc.

[Bonus: Is there a 3-polytope combinatorially isomorphic to C3 such that

O = Oc?]

iii) An orientation O is called a unique sink orientation (USO) of G(P ), if

G(F ) has a unique sink for every face F ⊂ P . Is every USO also acyclic?

(10+3 points)

Exercise 2. Consider the graph G = G(P ) = (V,E) of a simple 4-polytope P with vertices

V = {0, . . . , 8} and edges

E = {(0, 1), (0, 2), (0, 4), (0, 7), (1, 2), (1, 5), (1, 8), (2, 3), (2, 6),

(3, 4), (3, 5), (3, 6), (4, 5), (4, 7), (5, 8), (6, 7), (6, 8), (7, 8)}.

i) Í What is s(P ), the total number of nonempty faces of P?

ii) Í Let G1 and G2 be the subgraphs of P induced by the vertex sets V1 =

{0, 1, 4, 5, 7, 8} and V2 = {0, 1, 2, 3, 5, 7, 8}, respectively. Are G1 and G2

subgraphs corresponding to facets of P?

You can find these graphs at:

http://page.mi.fu-berlin.de/sanyal/teaching/dg1/Hw9Ex2.sws

(10 points)

Exercise 3. Let C ⊂ Rd be a pointed cone.

i) Show that there is a hyperplane H such that for every k-face F ⊂ C we

have that H ∩ F is a polytope of dimension k − 1.

ii) Show that

χ(C) :=
∑
i≥0

(−1)ifi(C) = 0.

http://page.mi.fu-berlin.de/sanyal/teaching/dg1/Hw9Ex2.sws


iii) [Bonus: What is χ(Q) for a nonempty polyhedron Q?]

(10+3 points)

Exercise 4. Let P be a simple (d − 1)-polytope. Let P ′ = prism(P ) := P × [0, 1] be the

prism over P .

i) Show that hi(P
′) = hi(P ) + hi−1(P ) for i = 0, . . . , d + 1 only using

orientations on graphs. (Here, h−1(P ) = hd(P ) = 0.)

Let d = 2m be even and for 0 ≤ i ≤ m define Qd
i := prismd−2i(∆2i), the

(d− 2i)-fold prism over the 2i-dimensional simplex.

ii) Compute the h-vector of Qd
i .

iii) Show that the h-vectors (h(Qd
i ) : 0 ≤ i ≤ bd2c) are affinely independent.

(10 points)

Exercise 5. i) Show that if P is a simple and simplicial d-polytope for d ≥ 3, then P is a

simplex.

ii) Show that there is no 4-polytope with f0 = 6 and f1 = 12.

[Hint: Try to infer the f -vector from this data.]

iii) Give an example of a 4-connected 4-regular graph which is not the graph

of a simple 4-polytope. [Hint: 6 vertices suffice.]

(10 points)

Exercise 6. Let P be a simple 4-dimensional polytope and consider

K(P ) :=
∑

F⊂P facet

(f0(F )− f1(F ) + f2(F ))

i) Show that K(P ) = 2f3(P ).

ii) Expand the sum and interpret each of the 4 sums individually to show that

K(P ) = 4f0(P )− 3f1(P ) + 2f2(P ).

iii) Together this gives a linear relation on the f -vector. How is it implied by

the Dehn-Sommerville equations?

(10 points)

Bonus Exercise 1. Let P ⊂ Rd be a d-polytope with vertices v1, . . . , vn. Let G = ([n], E)

be the graph with ij ∈ E if [vi, vj ] is a face of P .

i) Define the zonotope ZP ⊂ Rd as

ZP :=
∑
ij∈E

[vi − vj , vj − vi].

Prove that the vertices of ZP are in bijection with the orientations Oc for

c ∈ Rd general with respect to P .

ii) Define the zonotope ZG ⊂ Rn by

ZG :=
∑
ij∈E

[ei − ej , ej − ei].

Prove that the vertices of ZG are in bijection with acyclic orientations of G.

iii) Prove that ZP is a projection of ZG.

iv) Prove that the permutahedron Πd−1 is affinely equivalent to ZG for some

graph G.

v) Compute the h-vector of Πd−1.

(+3+3+1+3+3 points)



Bonus Exercise 2. Let P be a centrally-symmetric d-polytope, that is, P = −P . Show

that

s(P ) := f0 + f1 + · · ·+ fd ≥ 3d

i) for d = 2 (trivial);

ii) for d = 3 (interesting);

iii) for d = 4 (challenging!);

iv) for d ≥ 5 (open!!).

(+3+9+27+81 points)


