Prof. Raman Sanyal

Dr. Arnau Padrol

Discrete Geometry I

Homework #8 — due December 10th

Please mark two of the exercises (but try to solve all of them). State who wrote the solution.

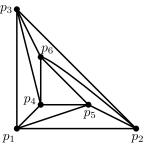
Exercise 1. Consider the set

$$\mathcal{F}_3 = \{ (f_0, f_1, f_2) \in \mathbb{Z}^3 : f_0 - f_1 + f_2 = 2, f_0 \le 2f_2 - 4, f_2 \le 2f_0 - 4 \}$$

- i) Show that for every 3-polytope P, its f-vector f(P) belongs to \mathcal{F}_3 .
- ii) ($^{\bullet}$?) Draw \mathcal{F}_3 (for $f_0, f_2 \leq 10$), identify the points corresponding to the f-vectors of the simplex, the cube and the octahedron, and those corresponding to pyramids over polygons.
- iii) Describe the effect of truncating (see exercise 4 of homework sheet # 7) and stacking (its polar operation) on the f-vector of a 3-polytope.
- iv) Show that every $f \in \mathcal{F}_3$ is the f-vector of a 3-polytope.

(10 points)

Exercise 2. Consider the following planar graph G

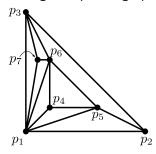


embedded in the plane with $p_1=(0,0)$, $p_2=(5,0)$, $p_3=(0,5)$, $p_4=(1,1)$, $p_5=(3,1)$ and $p_6=(1,3)$.

- ii) $^{\circ}$ Compute and draw the equilibrium embedding for the case when all the weights are $\omega_e=1$.

(10 points)

Exercise 3. Consider the following embedding of a planar graph G



where $p_1=(0,0)$, $p_2=(5,0)$, $p_3=(0,5)$, $p_4=(1,1)$, $p_5=(3,1)$, $p_6=(1,3)$ and $p_7=(\frac{1}{2}.3)$.

Define its **space of liftings** ${\mathcal H}$ as

$$\mathcal{H}:=\{(h_4,\ldots,h_7)\in\mathbb{R}^4_{\geq 0}\ :\ \mathrm{graph}(\mathsf{conv}(\{(p_i,h_i)\ :\ 1\leq i\leq 7\}))=G\},$$
 where $h_1=h_2=h_3=0.$

That is, the set of choices of $h_i \geq 0$ such that lifting each point p_i to (p_i, h_i) gives the set of vertices of a polytope with the desired graph.

- i) Prove that its closure $\overline{\mathcal{H}}$ is a convex polyhedral cone.
- ii) $\ ^{\square}$ Consider $\overline{\mathcal{H}} \cap \{h_5 = 1\}$. Show that it is a polytope and plot it.
- iii) $\ ^{}$ For each vertex v of $\overline{\mathcal{H}} \cap \{h_5 = 1\}$, consider the associated lifting of G. Compute these liftings and draw the graphs of the polytopes that you obtain.

(10 points)

- **Exercise 4.** i) Let G be a k-connected graph and let S be a subset of its vertices of size $|S| \geq k$. Let G' be the graph obtained from G by adding one additional vertex connected to each $v \in S$. Prove that G' is k-connected.
 - ii) A subdivision of a graph G is any graph obtained by replacing edges of G by paths. Show that the graph of every 3-polytope contains subdivision of K_4 .
 - iii) Show that the graph of every 4-polytope contains subdivision of K_5 . [Hint: Look up Menger's Theorem.]
 - iv) Conclude that G(P) is not planar for $\dim P \geq 4$. [Hint: Look up Kuratowski's Theorem.]
 - v) [Bonus: Show that the graph of every d-polytope contains subdivision of K_{d+1} .]

(10+3 points)