Discrete Geometry I

Homework # 7 — due December 3rd

Please mark **two** of the exercises (but try to solve all of them). State who wrote the solution.

Exercise 1. Let $P \subset \mathbb{R}^d$ and $Q \subset \mathbb{R}^e$ be full-dimensional nonempty polytopes containing the origin in its interior. Find necessary and sufficient conditions for ...

- i) ... $P \times Q$ being simple.
- ii) ... $P \times Q$ being simplicial.
- iii) ... $P \times Q$ being k-neighborly.
- iv) ... $P \oplus Q$ being simple.
- v) ... $P \oplus Q$ being simplicial.
- vi) ... $P \oplus Q$ being k-neighborly.
- vii) ... P * Q being simple.
- viii) ... P * Q being simplicial.
- ix) ... P * Q being k-neighborly.

(10 points)

Exercise 2. Let $F \subset \mathbb{R}^d$ be a polytope and H a hyperplane.

i) Show that if $F \nsubseteq H$, then either $F \cap H$ is a proper face of F, or relint $(F) \cap H \neq \emptyset$.

ii) Show that if $F \nsubseteq H$ and relint $(F) \cap H \neq \emptyset$, then $\dim F \cap H = \dim F - 1$. Let $P \subset \mathbb{R}^d$ be a *d*-polytope. For $v \in V(P)$, let H be a hyperplane strictly separating v and $P' = \operatorname{conv}(V(P) \setminus \{v\})$ and let $P_v = P \cap H$.

- iii) Show that there is an inclusion-preserving bijection between (k-1)-faces of P_v and k-faces of P containing v for all $k = 0, \ldots, d$. In particular, $[v, P]_{\mathcal{L}(P)} \cong \mathcal{L}(P_v)$.
- iv) For every proper face F of P, show that there is a polytope P_F such that $[F, P]_{\mathcal{L}(P)} \cong \mathcal{L}(P_F)$.

(10 points)

- **Exercise 3.** i) Show that the Boolean lattice $\mathcal{B}_n = (2^{[n]}, \subseteq)$ is Eulerian.
 - ii) Show that for every nonempty polytope P, $\mathcal{L}(pyr(P))$ is Eulerian if and only if $\mathcal{L}(P)$ is.
 - iii) Show that for every nonempty polytope P, $\mathcal{L}(prism(P))$ is Eulerian if and only if $\mathcal{L}(P)$ is.
 - iv) Find a graded, atomic and coatomic lattice with the diamond property and rank $rk(\hat{1}) \in \{3, 4\}$ that is not the face lattice of a polytope.
 - v) Can you find an example that is Eulerian?

- **Exercise 4.** For a polyhedron Q, we define the graph of Q as G(Q) = (V, E) with V = V(Q) and $E = \{uv : [u, v] \subset Q \text{ edge}\}.$
 - i) Is it true that every G(Q) is connected for every pointed *d*-polyhedron?
 - ii) What is the maximal k = k(d) such that every d-polyhedron Q is at least k-connected?
 - Let P be a 3-polytope with graph G = G(P).
 - iii) Prove that if G has a node v of degree 3, then the graph G' obtained by replacing v by a triangle (as in the figure) is also the graph of a 3-polytope.

What is the polar operation (in terms of the graph of the polar polytope)?

iv) The Prove that the following graph is the graph of a polytope (find vertex coordinates and check with SAGE that you obtain the correct graph). Can it be the graph of a 4-polytope?

(10 points)

Bonus Exercise. A graph is Hamiltonian if it contains a cycle that visits every node without repeating any edge. Can you find a 3-polytope whose graph is not Hamiltonian?
(+ 5 points)