FREIE UNIVERSITÄT BERLIN Institut für Mathematik Prof. Raman Sanyal Dr. Arnau Padrol

Discrete Geometry I

Homework # 3— due November 5th

You can write your solution to the homeworks in **pairs**. Please try to solve *all* problems. This will deepen the understanding of the material covered in the lectures. You are welcome to ask (in person or email) for additional **hints** for any exercise. Please think about the exercise before you ask. Please mark **two** of your solutions. Only these will be graded. The problems marked with a \square are **mandatory**. You can earn **20 points** on every homework sheet. You can get extra credit by solving the bonus problems. **State** who wrote up the solution. You have to hand in the solutions **before** the recitation on Wednesday. Homework sheets and additional information (including corrections) will be announced on the mailinglist. If you haven't signed up already, please do that at

https://lists.fu-berlin.de/listinfo/dg1

Exercise 1. Let $a=(a_1\geq a_2\geq \cdots \geq a_d)$, the **generalized permutahedron** is defined by $\Pi_{d-1}(a) = \operatorname{conv}\{(a_{\pi(1)}, a_{\pi(2)}, \dots, a_{\pi(d)}) : \pi \text{ permutation of } [d] \}$

- i) $\stackrel{\bullet}{\cong}$ Write a function that, given a as input, constructs the generalized permutahedron $\Pi_{d-1}(a)$.
- ii) Prove that if $a_1\geq a_2\geq\cdots\geq a_d$ and $b_1\geq b_2\geq\cdots\geq b_d$, then $a_1b_1+a_2b_2+\cdots+a_db_d\geq a_1b_{\pi(1)}+a_2b_{\pi(2)}+\cdots+a_db_{\pi(d)}$

for every permutation π of [d]. When is the inequality strict?

- iii) Assume that $a=(a_1>a_2>\cdots>a_d)$. For a permutation π , denote by $\pi(a)=(a_{\pi(1)},a_{\pi(2)},\ldots,a_{\pi(d)})$. Show that $[a,\pi(a)]=\operatorname{conv}\{a,\pi(a)\}$ is an edge of $\Pi_{d-1}(a)$ if π is an **adjacent transposition**, that is, $\pi(a)=(a_1,\ldots,a_{i+1},a_i,\ldots,a_d)$ for some $1\leq i< d$.
- iv) $\ ^{oldsymbol{\circ}}$ Using (iii), write a function that makes the graph of $\Pi_{d-1}(a)$, $a=(a_1>a_2>\cdots>a_d)$. (Without computing the polytope.) Check for $3\leq d\leq 5$ that the graph you generate with this function is isomorphic to the graph of the polytope $\Pi_{d-1}(a)$ computed with the function from (i) (for some $a=(a_1>a_2>\cdots>a_d)$).

(10 points)

Exercise 2. Let G = (V, E) be a graph with n vertices $V = \{v_1, \ldots, v_n\}$. A **stable (or independent) set** of G is a subset $S \subseteq V$ such that there is no edge of G between two elements of S.

The indicator vector of a stable set S is the vector $\mathbf{1}(S) \in \mathbb{R}^n$ with coordinates

$$\mathbf{1}(S)_i = \begin{cases} 1 & \text{if } v_i \in S \\ 0 & \text{otherwise.} \end{cases}$$

The **stable set polytope** of a graph G is

$$STAB(G) = conv(\{1(S) : S \text{ stable set of } G\}).$$

- i) Prove that STAB(G) is of dimension n and that $\{\mathbf{1}(S): S\subseteq V \text{ stable}\}$ are its vertices.
- ii) $\ ^{\bullet}$ Write a SAGE function that computes STAB(G) for an input graph G.
- iii) What is STAB(G) for the complete graph K_n ? Compute the f-vectors of $STAB(C_m)$ for the m-cycles m=3,4,5,6.
- iv) Show that

$$STAB(G) \subseteq \{x \in \mathbb{R}^n : x \ge 0, x_u + x_v \le 1 \text{ for all } uv \in E\}.$$

Find an example where the inclusion is strict.

- v) A subset $K \subseteq V$ is a **clique** if $uv \in E$ for all $u, v \in K$, $u \neq v$. Show that you can extend the inequality formulation of (iv) using cliques. Can you find an example where the inclusion is still strict?
 - [Hint : Try the examples from (iii)].
- vi) For $W \subseteq V$, the induced subgraph G[W] has vertices W and edges $\{uv \in E : u, v \in W\}$. Show that STAB(G[W]) is a face of STAB(G).

(10 points)

Exercise 3. Let $C = \text{cone}\{u_1, \dots, u_n\} \subseteq \mathbb{R}^d$ be a **convex polyhedral cone**. That is,

$$C = \{ x \in \mathbb{R}^d : x = \sum \lambda_i u_i, \ \lambda_i \ge 0 \}.$$

We say that C is **pointed** if it does not contain a whole line through the origin. That is, there is no $v \in \mathbb{R}^d$ such that $\lambda v \in C$ for all $\lambda \in \mathbb{R}$.

- i) Prove that C is pointed if and only if 0 is a face, that is, $C \cap H = \{0\}$ for some supporting hyperplane $H = \{x : c^t x = 0\}$.
- ii) With this hyperplane show that $C_p=C\cap (p+H)$ is a polytope for any $p\in C\setminus\{0\}.$
- iii) Deduce that if $u_i \neq \lambda u_j$ for all $\lambda \in \mathbb{R}$ and $i \neq j$, then there is a unique inclusion-minimal subset $U' \subseteq U$ such that C = cone(U').

(10 points)

Exercise 4. Let $P \subset \mathbb{R}^d$ and $Q \subset \mathbb{R}^e$ be full-dimensional polytopes containing the origin in their interior (that is $0 \in H^- \setminus H$ for every supporting hyperplane H). The **free sum** of P and Q is the polytope $P \oplus Q$ defined by

$$P \oplus Q := \operatorname{conv} \left(\left\{ (p,0) \in \mathbb{R}^{d+e} \ : \ p \in P \right\} \cup \left\{ (0,q) \in \mathbb{R}^{d+e} \ : \ q \in Q \right\} \right).$$

- i) Express the d-crosspolytope $C_d^{\triangle}=\{x\in\mathbb{R}^d:\sum |x_i|\leq 1\}$ as a free sum of d segments.
- ii) Let P be a polytope that contains the origin in the interior and let F be a proper face of P. Prove that there is a supporting hyperplane H_a for F of the form $H_a = \{x \in \mathbb{R}^d : a^t \cdot x = 1\}$ such that for every $x \in P$, $a^t \cdot x \leq 1$.
- iii) Let F and G be proper (maybe empty) faces of P and Q, respectively. Prove that the set

$$V_{F,G} = \{(p,0) : p \in V(P) \cap F\} \cup \{(0,q) : q \in V(Q) \cap G\}$$

is the set of vertices of a proper face of $P \oplus Q$.

- iv) Prove that every proper face of $P\oplus Q$ has a set of vertices of the form $V_{F,G}$ for some proper faces F and G of P and Q, respectively.
- v) Express $f_k(P\oplus Q)$, $-1\leq k\leq d+e$, in terms of the face numbers of P and Q.

(10 points)