FREIE UNIVERSITÄT BERLIN Institut für Mathematik Prof. Raman Sanyal Dr. Arnau Padrol

Discrete Geometry I

Homework # 2— due October 29th

You can write your solution to the homeworks in **pairs**. Please try to solve *all* problems. This will deepen the understanding of the material covered in the lectures. You are welcome to ask (in person or email) for additional **hints** for any exercise. Please think about the exercise before you ask. Please mark **two** of your solutions. Only these will be graded. The problems marked with a are **mandatory**. You can earn **20 points** on every homework sheet. You can get extra credit by solving the bonus problems. **State** who wrote up the solution. You have to hand in the solutions **before** the recitation on Wednesday. Homework sheets and additional information (including corrections) will be announced on the mailinglist. If you haven't signed up already, please do that at

https://lists.fu-berlin.de/listinfo/dg1

- **Exercise 1.** Let $V = \{v_1, \dots, v_n\} \subset \mathbb{R}^d$ be a point configuration affinely spanning \mathbb{R}^d (i.e. $aff(V) = \mathbb{R}^d$). Let \mathcal{H} be the collection of hyperplanes spanned by V.
 - i) Show that there is at least one hyperplane $H \in \mathcal{H}$ that is supporting for $P = \operatorname{conv}(V)$.
 - ii) Show that every d-polytope has a (d-1)-face. [Bonus (+3): Show that every d-polytope has at least d+1 (d-1)-faces.]

(10+3 points)

- **Exercise 2.** Let P be a d-polytope and $1 \le k \le d$. We say that P is k-neighborly if $\operatorname{conv}(V')$ is a face of P for all $V' \subseteq V(P)$ with |V'| = k, where V(P) is the set of vertices of P.
 - i) Show that if P is k-neighborly, then $P' = \operatorname{conv}(V')$ is also k-neighborly for all $V' \subseteq V(P)$.
 - ii) Show that if P is k-neighborly then it is ℓ -neighborly for every $\ell \leq k$.
 - iii) ullet Write a SAGE/polymake function that computes the neighborliness of a polytope and verify that the cyclic d-polytope with n vertices is $\left\lfloor \frac{d}{2} \right\rfloor$ -neighborly for all $2 \leq d \leq 10$ and $d+1 \leq n \leq 2d$.

(10 points)

Exercise 3. For d < n and $r_1 < r_2 < \cdots < r_n$ let

$$C = \mathsf{Cyc}_d(r_1, r_2, \dots, r_n) = \mathsf{conv}\{\gamma_d(r_i) : i = 1, 2, \dots, n\}$$

be a cyclic d-polytope. (Recall that $\gamma_d(t) = (t, t^2, \dots, t^d)^t$.)

i) Let $I \subseteq [n]$. An element $j \notin I$ is an **odd** or **even gap** if the number $|\{i \in I : i < j\}|$ is odd or even, respectively.

For $I \subseteq [n]$ with |I| = d show that

$$F_I = \operatorname{conv}\{\gamma_d(r_i) : i \in I\}$$

is a facet of C if and only if all gaps of I are either all even or odd.

- [Bonus (+3): What is the number (closed formula!) of facets $f_{d-1}(C)$? What is the number of k-faces?]
- ii) Consider a **lifting** of a cyclic polytope $\operatorname{Cyc}_d(n)$ with n>d+1. That is a (d+1)-polytope P with n vertices of the form $v_i=(\gamma_d(r_i),\alpha_i)$ for some $r_i,\alpha_i\in\mathbb{R}$. Prove that P is $\left\lfloor\frac{d}{2}\right\rfloor$ -neighborly.
- iii) $^{\bullet}$ Generate 5-dimensional polytopes with 10 vertices that are 2-neighborly (that is, their graph is the complete graph) and have a facet with k vertices for $k \in \{6, \dots, 9\}$. Is any of these affinely isomorphic to a cyclic polytope? (10+3 points)
- **Exercise 4.** i) Given non-empty polytopes P_1 and P_2 show that for every pair of faces $F_1\subseteq P_1, F_2\subseteq P_2$ their product $F_1\times F_2$ is a face of $P_1\times P_2$. And conversely, for every non-empty face F of $P_1\times P_2$ there are unique faces $F_1\subseteq P_1$ and $F_2\subseteq P_2$ such that $F=F_1\times F_2$.
 - ii) Let $\pi:P o Q$ be an affine projection of polytopes (that is, there is an affine map $\pi:\mathbb{R}^d\to\mathbb{R}^e$ such that $\pi(P)=Q$). Show that $\pi^{-1}(F)\cap P$ is a face of P for every face $F\subseteq Q$.
 - iii) Given non-empty polytopes P_1 and P_2 show that if $F \subseteq P_1 + P_2$ is a face, then $F = F_1 + F_2$ for some faces $F_i \subseteq P_i$. Show that F_1 and F_2 are unique.

(10 points)