Combinatorial Reciprocity Theorems

Homework # 4 — due May 19, **before** the lecture

Exercise 1. Let P,Q be two finite posets. Then $P \times Q$ is a poset by defining

$$(p_1,q_1) \preceq_{P\times Q} (p_2,q_2)$$

if and only if $p_1 \leq_P p_2$ and $q_1 \leq_Q q_2$ for $p_1, p_2 \in P$ and $q_1, q_2 \in Q$.

- i) Show that every interval of $P \times Q$ is of the form $[p, p']_P \times [q, q']_Q$.
- ii) Show that we have

$$\mu_{P\times Q}((p_1,q_1),(p_2,q_2)) = \mu_P(p_1,p_2)\cdot\mu_Q(q_1,q_2)$$

for all $p_1, p_2 \in P$ and $q_1, q_2 \in Q$.

iii) By using ii) show that the Möbius function of the Boolean lattice $\mathcal{B}_k=(2^{[k]},\subseteq)$ satisfies

$$\mu_{\mathcal{B}_k}(S,T) = (-1)^{|T \setminus S|}$$

for $S \subseteq T \in \mathcal{B}_k$.

iv) Bonus: Let G=(E,V) be a graph. Consider the poset $\mathcal{S}\subseteq 2^E$ of all cycle free subgraphs ordered by inclusion. Compute the Möbius function of \mathcal{S} .

(1+2+2+2 points)

Exercise 2. Let Π be a finite poset. Recall that $\zeta = \delta + \eta$ where $\eta(x,y) = 1$ if and only if $x \prec y$.

i) Show that for $x \leq y$

$$\eta^{n}(x,y) = \#\{x = x_0 \prec x_1 \prec \cdots \prec x_n = y\},\$$

the number of *strict* chains of length n in the interval [x, y].

- ii) Infer that η is nilpotent, that is, $\eta^n \equiv 0$ for all $n > n_0$. What is the smallest n_0 ?
- iii) Bonus: Can you give an interpretation for $(2\delta \zeta)^{-1}(x,y)$?
- iv) Show that $\eta^r_{\mathcal{J}(\Pi)}(\emptyset,\Pi)$ equals the number of surjective order preserving maps $\Pi \to [r].$

Exercise 3. Prove Birkhoff's representation theorem:

Every finite distributive lattice is isomorphic to the poset of order ideals of some finite poset.

The definition of "distributive lattice" is in the book draft.

(Hint: Given a distributive lattice Π , consider the subposet Θ consisting of all **join-irreducible** elements, i.e. those elements $x \in \Pi$, for which $x \neq y \vee z$ for all $y \neq z$. Prove, that Π is isomorphic to $\mathcal{J}(\Theta)$.)

(4 points)