Combinatorial Reciprocity Theorems

Homework # 3 — due May 12, **before** the lecture

- **Exercise 1.** Let $P,Q_1,\ldots,Q_m\subset\mathbb{R}^2$ be lattice polygons, such that Q_i lies in the interior of P for all $1\leq i\leq m$ and $Q_i\cap Q_j=\emptyset$ for all $i\neq j$. Let $\mathcal{S}=P\setminus\bigcup_{i=1}^mQ_i^\circ$ be a "polygon with m holes".
 - i) Show that the Ehrhart function $ehr_{\mathcal{S}}(n)$ of \mathcal{S} agrees with a polynomial for $n \geq 1$.
 - ii) What are the coefficients of the Ehrhart polynomial $ehr_{\mathcal{S}}(n)$?
 - iii) What does $ehr_{\mathcal{S}}(-n)$ count?

(1+3+2 points)

Exercise 2. The *d*-dimensional **crosspolytope** is the convex polytope

$$\Diamond_d = \left\{ x \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \right\}$$

- i) Compute the Ehrhart polynomial of \Diamond_2 .
- ii) Compute the Ehrhart polynomial of the octahedron \Diamond_3 .
- iii) Bonus: Compute the Ehrhart polynomial of \Diamond_d for all $d \geq 1$.

(2+3+4 points)

(continued on backside)

Exercise 3. A linear extension of a finite poset Π is a bijective strictly order preserving map $\lambda\colon\Pi\to[d]$ where $d=|\Pi|.$

- i) Show that every finite poset $\boldsymbol{\Pi}$ has a linear extension.
- ii) Show that linear extensions are in bijection with strict chains of order ideals of length $|\Pi|$.

(2+2 points)