FREIE UNIVERSITÄT BERLIN Institut für Mathematik Prof. Raman Sanyal Katharina Jochemko

Combinatorial Reciprocity Theorems

Homework # 1 — due April 28, **before** the lecture

Exercise 1. Find the chromatic polynomials of

- i) the wheel with k spokes (and k+1 nodes).
- For example, the wheel with 6 spokes is \bigotimes .
- ii) the cycle on k nodes.
- iii) the path on k nodes.

(3+2+1 points)

Exercise 2. Find two simple non-isomorphic graphs G and H with $\chi_G(n) = \chi_H(n)$. G and H are isomorphic if there is a bijection $\phi: V(G) \to V(H)$ such that

 $uv \in E(G) \iff \phi(u)\phi(v) \in E(H).$

Bonus: Can you find many (polynomial, exponential) such examples in the number of nodes?

(Bonus)²: Can you make your examples arbitrarily high connected?

(3+2+2 points)

Exercise 3. The complete bipartite graph $K_{r,s}$ is the graph with vertex set $V = \{1, \ldots, r, 1', \ldots, s'\}$ and edge set $E = \{ij' : i \in [r], j \in [s]\}$.

i) Determine $\chi_{K_{3,3}}(n)$.

ii) Determine $\chi_{K_{r,s}}(n)$ for all $r, s \ge 1$.

(*Hint:* Proper *n*-colorings of $K_{r,s}$ correspond to pairs (f,g) of maps $f: [r] \to [n]$ and $g: [s] \to [n]$ with disjoint ranges.)

(3+4 points)

(continued on backside)

Exercise 4. Prove that the complete graph K_d (the graph on d nodes with all possible edges between them) has exactly d! acyclic orientations.

(2 points)

Exercise 5. Let G = (V, E) be an oriented graph and $n \ge 2$.

i) Let $f: E \to \mathbb{Z}_n$ be a nowhere-zero \mathbb{Z}_n -flow and let $e \in E$. Show that

 $f: E \setminus \{e\} \to \mathbb{Z}_n$

is a nowhere-zero \mathbb{Z}_n -flow on the contraction G/e.

ii) For $S \subseteq V$ let $E^{in}(S)$ be the *in-coming* edges, i.e., $u \to v$ with $v \in S$ and $u \in V \setminus S$ and $E^{out}(S)$ the *out-going* edges. Show that $f : E \to \mathbb{Z}_n$ is a nowhere-zero \mathbb{Z}_n -flow if and only if

$$\sum_{e \in E^{\text{in}}(S)} f(e) = \sum_{e \in E^{\text{out}}(S)} f(e)$$

for all $S \subseteq V$.

iii) Infer that $\phi_G \equiv 0$ if G has a bridge.

(1+3+1 points)

Exercise 6. Let G = (E, V) be a bridgeless graph. Prove that

i) $\phi_G(n)$, the number of nowhere-zero \mathbb{Z}_n -flows, is a polynomial in n.

- ii) the degree of $\phi_G(n)$ is |E| |V| + 1.
- iii) Bonus: $\phi_G(n) \leq \phi_G(n+1)$ for all $n \in \mathbb{Z}_{>0}$.

(3+2+1 points)

We are happy to answer your upcoming questions at any time and give additional hints where necessary.