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Preface

Combinatorics is not a science, it’s an attitude.
Mark Haiman

A combinatorial reciprocity theorem relates two classes of combinatorial
objects via their counting functions. Consider a class X of combinatorial
objects and let f (n) be the function that counts the number of objects in
X of size n, where “size” refers to some specific quantity that is naturally
associated with the objects in X . As in canonization, it requires two miracles
for a combinatorial reciprocity to occur:

1. The function f (n) is the restriction of some reasonable function (e.g., a
polynomial) F(x) to the positive integers, and

2. the evalutation F(�n) is an integer of the same sign s 2 {±1} for all
n 2Z>0.

In this situation it is human to ask if s F(�n) has a combinatorial meaning,
that is, if there is a natural class X � of combinatorial objects such that
s F(�n) counts the objects of X � of size n (where “size” again refers to
some specific quantity, possibly quite different from the quantity we were
measuring for X ). Combinatorial reciprocity theorems are among the most
charming results in mathematics and, in contrast to canonization, can be
found all over enumerative combinatorics and beyond.

As a first example consider the class of maps [k]!Z>0 from a finite set [k] =
{1,2, . . . ,k} into the positive integers and let f (n) = nk count the number
of maps with range [n]. Thus f (n) is the restriction of a polynomial and
(�1)k f (�n) = nk satisfies our second requirement above. This relates the
number of maps [k]! [n] to itself. This relation is a genuine combinatorial
reciprocity but the impression one is left with is that of being underwhelmed
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2 Preface

rather than charmed. Later in the book it will become clear that this example
is not boring at all but for now let’s try again.

The term “combinatorial reciprocity theorem” was coined by Richard Stanley
in his 1974 paper [68] of the same title, in which he developed a firm
standing of the subject. Stanley starts with a very appealing reciprocity that
he attributes to Riordan: For a fixed integer d, let f (n) count the number
of d-subsets of an n-set, that is, the number of choices of taking d elements
from a set of n elements without repetition. The counting function is given
by the binomial coefficient

f (n) =

✓

n
d

◆

=
1
d!

n(n� 1) · · · (n� d + 2)(n� d + 1) (0.1)

which is the restriction of a polynomial in n of degree d, and from the
factorization we can read off that (�1)d f (�n) is a positive integer for every
n > 0. More precisely,

(�1)d f (�n) =
1
d!

(n + d� 1)(n + d� 2) · · · (n + 1)n =

✓

n + d� 1
d

◆

is the number of d-multisubsets of an n-set, that is, the number of picking d
elements from [n] with repetition. Now this is a combinatorial reciprocity!
In formulas it reads

(�1)d
✓

n
d

◆

=

✓

n + d� 1
d

◆

. (0.2)

This is a charming result in more than one way. It presents an intriguing con-
nection between subsets and multisubsets via their counting functions, and
its formal justification is completely within the realms of an undergraduate
class in combinatorics. This result can be found in Riordan’s book [57] on
combinatorial analysis without further comment and, charmingly, Stanley
states that his paper can be considered as “further comment”. That further
comment is necessary is apparent from the fact that the formal proof above
falls short of explaining why these two sorts of objects are related by a com-
binatorial reciprocity. In particular, comparing coefficients in (0.2) cannot be
the tool of choice for establishing more general reciprocity relations.

In this book we develop tools and techniques for handling combinatorial
reciprocities. However, our own perspective is firmly rooted in geometric
combinatorics and, thus, our emphasis is on the geometric nature of the
combinatorial reciprocities. That is, for every class of combinatorial objects
we associate a geometric object (such as a polytope or a polyhedral complex)
in such a way that combinatorial features, including counting functions and
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reciprocity, are reflected in the geometry. In short, this book can be seen as
further comment with pictures.

The prerequisites for this book are minimal: basic knowledge of linear alge-
bra and combinatorics should suffice. The numerous exercises throughout
the text are designed so that the book could easily be used for a graduate
class in combinatorics.

Acknowledgments





Chapter 1

Four Polynomials

To many, mathematics is a collection of theorems. For me, mathematics is a collection of examples;
a theorem is a statement about a collection of examples and the purpose of proving theorems is to
classify and explain the examples...
John B. Conway

In the spirit of the above quote, this chapter serves as a source of examples
and motivation for the theorems to come and the tools to be developed.
Each of the following four sections introduces a family of examples together
with a reciprocity statement which we will prove in later chapters.

1.1 Graph colorings

Graphs and their colorings are all-time favorites in introductory classes
on discrete mathematics, and we too succumb to the temptation to start
with one of the most beautiful examples. A graph G = (V, E) is a discrete
structure composed of a finite1 set of nodes V and a collection E ✓ (V

2) of
unordered pairs of nodes, called edges. More precisely, this defines a simple
graph as it excludes the existence of multiple edges between nodes and, in
particular, edges with equal endpoints, i.e., loops. We will, however, need
such non-simple graphs in the sequel but we dread the formal overhead
non-simple graphs entail and will trust in the reader’s discretion to make the
necessary modifications. The most charming feature of graphs is that they
are easy to visualize and their natural habitat are the margins of textbooks
or notepads. Figure 1.1 shows some examples.

1 Infinite graphs are interesting in their own right; however, they are no fun to color-count
and so will play no role in this book.

5



6 1 Four Polynomials

Fig. 1.1 Various graphs.

An n-coloring of a graph G is a map c : V! [n]. An n-coloring c is called
proper if no two nodes sharing an edge get assigned the same color, that is,

c(u) 6= c(v) whenever uv 2 E .

The name coloring comes from the natural interpretation of thinking of c(v)
as one of n possible colors that we use for the node v. A proper coloring
is one where adjacent nodes get different colors. Here is a first indication
why considering simple graphs often suffices: the existence and even the
number of n-colorings is unaffected by parallel edges, and there are simply
no proper colorings in the presence of loops.

Much of the fame of colorings stems from a question that was asked around
1852 by Francis Guthrie and answered only some 124 years later. In order to
state the question in modern terms, we call a graph G planar if G can be
drawn in the plane (or scribbled in the margin) such that edges do not cross
except possibly at nodes. For example, the last row in Figure 1.1 shows a
planar and nonplanar embedding of the (planar) graph K4. Here is Guthrie’s
famous conjecture, now a theorem:

Four-color theorem. Every planar graph has a proper 4-coloring.
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There were several attempts at the four-color theorem before the first correct
proof by Kenneth Appel and Wolfgang Haken. Here is one particularly inter-
esting (but not yet successful) approach to proving the four-color theorem,
due to George Birkhoff. For a (not necessarily planar) graph G, let

cG(n) := #{c : V! [n] proper n-coloring} .

The following observation, due to George Birkhoff and Hassler Whitney, is
that cG(n) is the restriction to Z>0 of a particularily nice function:

Proposition 1.1. Let G = (V, E) be a loopless graph. Then cG(n) agrees with a
polynomial of degree |V| with integral coefficients.

By a slight abuse of notation, we identify cG(n) with this polynomial and
call it the chromatic polynomial of G. Nevertheless, let’s emphasize that,
so far, only the values of cG(n) at positive integral arguments have an
interpretation in terms of G.

One proof of Proposition 1.1 is interesting in its own right, as it exempli-
fies deletion–contraction arguments which we will revisit in Chapter 7 For
e 2 E, the deletion of e results in the graph G \ e := (V, E \ {e}). The con-
traction G/e is the graph obtained by identifying the two nodes incident to
e and removing any newly created parallel edges. An example is given in
Figure 1.2.

u

v

Fig. 1.2 Contracting the edge e = uv.

Proof of Proposition 1.1. We induct on |E|. For |E| = 0 there are no coloring
restrictions and cG(n) = n|V|. One step further, assume that G has a single
edge e = uv. Then we can color all nodes V \ u arbitrarily and, assuming
n � 2, can color u with any color 6= c(v). Thus, the chromatic polynomial is
cG(n) = nd�1(n� 1) where d = |V|. For the induction step now let e = uv2 E.
We claim

cG(n) = cG\e(n) � cG/e(n) (1.1)
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Indeed, a coloring c of G \ e fails to be a coloring of G if c(u) = c(v). That
is, we are over-counting by all proper colorings that assign the same color
to u and v. These are precisely the proper n-colorings of G/e. By (1.1) and
the induction hypothesis, cG(n) is the difference of a polynomial of degree
d = |V| and a polynomial of degree d� 1, both with integer coefficients. ut

The above proof and, more precisely, the deletion–contraction relation (1.1)
reveal more about chromatic polynomials, which we invite the reader to
show in Exercise 1.23:

Corollary 1.2. Let G be a loopless graph on d � 1 nodes and cG(n) = cdnd +
cd�1nd�1 + · · ·+ c0 its chromatic polynomial. Then

(a) the leading coefficient cd = 1;

(b) the constant coefficient c0 = 0;

(c) (�1)d
cG(�n) > 0 for all integral n � 1.

In particular the last property prompts the following natural question that
we alluded to in the preface and that lies at the heart of this book.

Question: Do the evaluations (�1)|V|
cG(�n) have combinatorial meaning?

This question was first asked (and beautifully answered) by Richard Stanley
in 1973. To reproduce his answer, we need the notion of orientations on
graphs. Again, to keep the formal pain level at a minimum, let’s denote the
nodes of G by v1,v2, . . . ,vd. We define an orientation on G through a subset
r ✓ E; for an edge e = vivj 2 E with i < j we direct

vi
e � vj if e 2 r and vi

e�! vj if e /2 r .

We denote the oriented graph by
r

G and will sometimes write
r

G = (V, E,r).
Said differently, we may think of G as canonically oriented by directing
edges from small index to large index and r records the edges on which this
orientation is reversed; see Figure 1.3 for an example.

A directed path is a constellation vi0 ! vi1 ! · · · ! vis in
r

G such that
vik 6= vil for 0  k < l  s, and it is called a directed cycle if vi0 = vis . An
orientation r of G is acyclic if there are no directed cycles in

r

G.

Here is the connection between proper colorings and acyclic orientations:
Given a proper coloring c, we define the orientation

r :=
�

vivj 2 E : i < j, c(vi) > c(vj)
 

.

That is, the edge from lower index i to higher index j is directed along
its color gradient c(vj)� c(vi). We call this orientation r induced by the
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5 5

55v4

v1 v2

v3

Fig. 1.3 An orientation given by r = {14,23,24}.

coloring c. For example, the orientation pictured in Figure 1.3 is induced by
the coloring shown in Figure 1.4.

12

4 5

2

4 5

1

Fig. 1.4 A coloring that induces the orientation in Figure 1.3.

Proposition 1.3. Let c : V! [n] be a proper coloring and r the induced orientation
on G. Then

r

G is acyclic.

Proof. Assume that vi0 ! vi1 ! · · ·! vis ! vi0 is a directed cycle in
r

G. Then
c(vi0) > c(vi1) > · · · > c(vis) > c(vi0) which is a contradiction. ut

As there are only finitely many acyclic orientations on G, we might count
colorings according to the acyclic orientation they induce. An orientation
r and a n-coloring c of G are called compatible if for every oriented edge
u! v in

r

G we have c(u)� c(v). The pair (r, c) is called strictly compatible
if c(u) > c(v) for every oriented edge u! v.

Proposition 1.4. If (r, c) is strictly compatible, then c is a proper coloring and
r is an acyclic orientation on G. In particular, cG(n) is the number of strictly
compatible pairs (r, c) where c is a proper n-coloring.

Proof. If (r, c) are strictly compatible then, since every edge is oriented,
c(u) > c(v) or c(u) < c(v) whenever uv 2 E. Hence c is a proper coloring
and r is exactly the orientation induced by c. Acyclicity of

r

G now follows
from Proposition 1.3. ut
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We are finally ready for our first combinatorial reciprocity theorem.

Theorem 1.5 (Stanley). Let G be a finite graph on d nodes and cG(n) its chro-
matic polynomial. Then (�1)d

cG(�n) is the number of compatible pairs (r, c)
where c is a n-coloring and r is an acyclic orientation. In particular, (�1)d

cG(�1)
is the number of acyclic orientations of G.

As one illustration of this theorem, consider the graph G in Figure 1.5;
its chromatic polynomial is cG(n) = n(n� 1)(n� 2)2, and so Theorem 1.5
suggests that G should admit 18 acyclic orientations. Indeed, there are 6
acylic orientations of the subgraph formed by v1, v2, and v4, and for the
remaining two edges, one of the four possible combined orientations of v2v3
and v3v4 produces a cycle with v2v4, so there are a total of 6 · 3 = 18 acyclic
orientations.

12

4 5

v4

v1 v2

v3

Fig. 1.5 This graph has 18 acyclic orientations.

A deletion–contraction proof of Theorem 1.5 is outlined in Exercise 1.26; we
will give a geometric proof in Section 7.3.

1.2 Flows on graphs

Given a graph G = (V, E) together with an orientation r and a finite abelian
group Zn = Z/nZ, a Zn-flow is a map f : E! Zn that assigns a value
f (e) 2Zn to every edge e 2 E such that there is conservation of flow at every
node v:

Â
e!v

f (e) = Â
v e!

f (e) ,

that is, what “flows” into the node v is precisely what “flows” out of v. This
physical interpretation is a bit shaky as the commodity flowing along edges
are elements of Zn, and the flow conservation is with respect to the group
structure. The set
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supp( f ) := {e 2 E : f (e) 6= 0}
is the support of f , and a Zn-flow f is nowhere zero if supp( f ) = E. In this
section we will be concerned with counting nowhere-zero Zn-flows, and so
we define

jG(n) := #
�

f nowhere-zero Zn-flow on
r

G
 

.

A priory, the counting function jG(n) depends on our chosen orientation
r, but our language suggests that this is not the case, which we invite the
reader to verify in Exercise 1.28:

Proposition 1.6. The flow-counting function jG(n) is independent on the orienta-
tion r of G.

A connected component of the graph G is a maximal subgraph of G in
which any two nodes are connected by a path. A graph G is connected if it
has only one connected component.2 As the reader will discover (at the latest
when working on Exercises 1.30 and 1.31), G will not have any nowhere-zero
flow if G has a bridge, that is, an edge whose removal increases the number
of connected components of G.

To motivate why we care about counting nowhere-zero flows, let’s assume
that G is a planar bridgeless graph with a given embedding into the plane.
The drawing of G subdivides the plane into connected regions in which two
points lie in the same region whenever they can be joined by a path in R2

that does not meet G. Two such regions are neighboring if their topological
closures share a proper (i.e., 1-dimensional) part of their boundaries. This
induces a graph structure on the subdivision of the plane: For the given
embedding of G, we define the dual graph G⇤ as the graph with nodes
corresponding to the regions and two regions C1,C2 share an edge e⇤ if an
original edge e is properly contained in both their boundaries. As we can
see in the example pictured in Figure 1.6, G⇤ is typically a non-simple graph
with parallel edges. If G had bridges, G⇤ would have loops.

Given an orientation of G, an orientation on G⇤ is induced by, for example,
rotating the edge clockwise. That is, the dual edge will “point” east assuming
that the primal edge “points” north.

By carefully adding G⇤ to the picture it can be seen that dualizing G⇤
recovers G, i.e., (G⇤)⇤ = G.
2 These notions refer to an unoriented graph.
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Fig. 1.6 A graph and its dual.

Our interest in flows lies in the connection to colorings: Let c be a n-coloring
of G and for a change let’s assume that c takes on colors in Zn. After giving
G an orientation, we can record the color-gradients t(uv) = c(v)� c(u) for
every oriented edge u! v and, knowing the color of a single node v0, we
can recover the coloring from t : E!Zn: For a node v 2 V simply choose
an undirected path v0 = p0 p1 p2 · · · pk = v from v0 to v. Then while walking
along this path we can color every node pi by adding or subtracting t(pi�1 pi)
to c(pi�1) depending whether we walked the edge pi�1 pi with or against
its orientation. This process is illustrated in Figure 1.7. The color c(v) is
independent of the chosen path and thus, walking along a cycle in G the
sum of the values t(e) of edges along their orientation minus those against
their orientation has to be zero. Now, via the correspondence of primal
and dual edges, t induces a map f : E⇤ !Zn on the dual graph G⇤. Every
node of G⇤ represents a region that is bounded by a cycle in G, and the
orientation on G⇤ is such that walking around this cycle clockwise, each
edge traversed along its orientation corresponds to a dual edge into the
region while counter-clockwise edges dually point out of the region. The
cycle condition above then proves:

Proposition 1.7. Let G be a connected planar graph with dual G⇤. For every n-
coloring c of G, the induced map f is a Zn-flow on G⇤ and every such flow arises
this way. Moreover, the coloring c is proper if and only if f is nowhere zero.

Conversely, for a given (nowhere-zero) flow f on G⇤ one can construct a
(proper) coloring on G (see Exercise 1.29). In light of all this, we can rephrase
the four-color theorem as follows:
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u
u u

u u

u
u e
ee

e e
e

Fig. 1.7 Passage from colorings to dual flows and back.

Corollary 1.8 (Dual four-color theorem). If G is a planar bridgeless graph, then
jG(4) > 0.

This perspective to colorings of planar graphs was pioneered by William
Tutte who initiated the study of jG(n) for all (not necessary planar) graphs.
To see how much flows differ from colorings, observe that there is no
universal constant n0 such that every graph has a proper n0-coloring. The
analagous statement for flows is not so clear and, in fact, Tutte conjectured
the following:

5-flow Conjecture. Every bridgeless graph has a nowhere-zero Z5-flow.

This sounds like a rather daring conjecture as it is not even clear that there
is any such n such that every bridgeless graph has a nowhere-zero Zn-flow.
However, it was shown by Paul Seymour that n  6 works. In Exercise 1.34
you will show that there exist graphs that do not admit a nowhere-zero
Z4-flow. So, similar to the history of the four-color theorem, the gap between
the conjectured and the actual truth could not be smaller.

On the enumerative side, we have the following:
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Proposition 1.9. If G is a bridgeless connected graph, then jG(n) agrees with a
polynomial with integer coefficients of degree |E|� |V|+ 1 and leading coefficient 1.

Again, we will abuse notation and refer to jG(n) as the flow polynomial.
The proof of the polynomiality is a deletion–contraction argument that is
deferred to Exercise 1.30.

Towards a reciprocity statement, we need a notion dual to acyclic orienta-
tions: an orientation r on G is totally cyclic if every edge in

r

G is contained
in a directed cycle. Let just quickly define the cyclotomic number of G as
x(G) := |E|� |V|+ c where c is the number of connected components of G.

Theorem 1.10. Let G be a bridgeless graph. For every positive integer n, the
evaluation (�1)x(G)

jG(�n) counts the number of pairs ( f ,r) where f is a Zn-flow
and r is a totally-cyclic reorientation of G/supp( f ). In particular, (�1)x(G)

jG(0)
is the number of totally-cyclic orientations of G.

We will prove this theorem in Section 7.4.

1.3 Order polynomials

A partially ordered set, or poset for short, is a set P together with a binary
relation �P that is

reflexive: a �P a,

transitive: a �P b �P c implies a �P c, and

anti-symmetric: a �P b and b �P a implies a = b,

for all a,b, c 2P. We write � if the poset is clear from the context.

Partially ordered sets are ubiquitous structures in combinatorics and, as
we will amply demonstrate soon, are indispensable in enumerative and
geometric combinatorics. The essence of a poset is encoded by its cover
relations: an element a 2P is covered by an element b if

[a,b] := {z 2P : a � z � b} = {a,b} ,

in plain English: a � b and there is nothing “between” a and b. From its
cover relations we can recover the poset by taking the transitive closure and
adding in the reflexive relations. The cover relations can be thought of as
a directed graph, and this gives an effective way to picture a poset: The
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Hasse diagram of P is a drawing of the directed graph of cover relations
in P as an (undirected) graph where the node a is drawn lower than the
node b whenever a � b. Here is an example: For n 2Z>0 we define Dn as
the set [n] = {1,2, . . . ,n} ordered by divisibilty, that is, a � b if a divides b.
The Hasse diagram of D10 is given in Figure 1.8.

1

5 2 3 7

10 4 6 9

8

Fig. 1.8 D10: The set [10], partially ordered by divisibility.

This example truly is a partial order as, for example, 2 and 7 are not compa-
rable. A poset in which every element is comparable to every other element
is a chain. To be more precise: the poset P is a chain if we have either a � b
or b � a for any two elements a,b 2 P. The elements of a chain are totally
or linearly ordered.

A map f : P!P0 is (weakly) order preserving if for all a,b 2P

a �P b =) f(a) �P0 f(b)

and strictly order preserving if

a �P b =) f(a) �P0 f(b) .

For example, we can label the elements of a chain P such that

P = {a1 � a2 � · · · � an}

which makes P isomorphic to [n] := {1 < 2 < · · · < n}, in the sense that
there is an order preserving bijection between P and [n].

Order preserving maps are the natural morphisms (even in a categorical
sense) between posets, and in this section we will be concerned with count-
ing (strictly) order preserving maps from a poset into chains. A strictly order
preserving map f from one chain [d] into another [n] exists only if d  n
and is then determined by
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1  f(1) < f(2) < · · · < f(d)  n .

Thus, the number of such maps equals (n
d), the number of d-subsets of an

n-set. In the case of a general poset P, we define the strict order polynomial

W�P(n) := #{f : P! [n] strictly order preserving} .

As we have just seen, W�P(n) is indeed a polynomial when P = [d]. We now
show that polynomiality holds for all posets P:

Proposition 1.11. For a finite poset P, the function W�P(n) agrees with a polyno-
mial of degree |P| with rational coefficients.

Proof. Let d := |P| and f : P! [n] be a strictly order preserving map. Now
f factors uniquely

P
s

!! !!

f

// [n]

f(P)
.
�

i

==

into a surjective map s onto f(P) followed by an injection i. (Use the
functions s(a) := f(a) and i(a) := a, defined with domains and codomains
pictured above.) The image f(P) is a subposet of a chain and so is itself
a chain. Thus W�P(n) counts the number of pairs (s, i) of strictly order
preserving maps P ⇣ [r]⇢ [n] for r = 1,2, . . . ,d. For fixed r, there are only
finitely many order preserving surjections s : P! [r], say, sr many. As we
discussed earlier, the number of strictly order preserving maps [r]! [n] is
exactly (n

r), which is a rational polynomial in n of degree r. Hence, for fixed
r, there are sr(

n
r) many pairs (s, i) and we obtain

W�P(n) = sd

✓

n
d

◆

+ sd�1

✓

n
d� 1

◆

+ · · · + s1

✓

n
1

◆

,

which finishes our proof. ut

As an aside, let’s mention that the above proposition proves that W�P(n) is a
polynomial with integral coefficients if we use

�

(n
r) : r 2Z�0

 

as a basis for
R[n]. That the binomial coefficients indeed form a basis for the univariate
polynomials follows from the proposition above: If P is an antichain on d
elements, i.e., a poset in which no elements are related,

W�P(n) = nd = sd

✓

n
d

◆

+ sd�1

✓

n
d� 1

◆

+ · · · + s1

✓

d
1

◆

.
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In this case, the coefficients sr = S(d,r) are the Stirling numbers of the
second kind which count the number of surjective maps [d] ⇣ [r]. (The
Stirling numbers might come in handy in Exercise 1.27.)

For the case that P is a d-chain, the reciprocity statement (0.2) says that
(�1)dW�P(�n) gives the number of d-multisubsets of an n-set, which equals,
in turn, the number of (weak) order preserving maps from a d-chain to an
n-chain. Our next reciprocity theorem expresses this duality between weak
and strict order preserving maps from a general poset into chains. You can
already guess what is coming. We define the order polynomial

WP(n) = #{f : P! [n] order preserving} .

A slight modification (which we invite the reader to check in Exercise
1.36) of our proof of Proposition 1.11 implies that WP(n) indeed agrees with
polynomial in n, and the following reciprocity theorem gives the relationship
between the two polynomials WP(n) and W�P(n).

Theorem 1.12. Let P be a finite poset. Then

(�1)|P| W�P(�n) = WP(n) .

We will prove this theorem in Chapter 2. To further motivate the study of
order polynomials, we remark that a poset P gives rise to an oriented graph
by way of the cover relations of P. Conversely, the binary relation given by
an oriented graph G can be completed to a partial order P(G) by adding
the necessary transitive and reflexive relations if and only if G is acyclic. The
following result will be the subject of Exercise 1.35.

Proposition 1.13. Let
r

G = (V, E,r) be an acyclic graph and P = P(
r

G) the
induced poset. A map c : V! [n] is strictly compatible with the orientation r of G
if and only if c is a strictly order preserving map P! [n].

In Proposition 1.4 we identified the number of n-colorings cG(n) of G as
the number of colorings c strictly compatible with some acyclic orientation
r of G, and so this proves:

Corollary 1.14. The chromatic polynomial cG(n) of a graph G is the sum of the
order polynomials W�P(

r

G)(n) for all acyclic orientations r of G.
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1.4 Ehrhart polynomials

The formulation of (0.1) in terms of d-subsets of a n-set has a straightforward
geometric interpretation that will fuel most of what is about to come: The
d-subsets of [n] correspond precisely to the points with integral coordinates
in the set

(n + 1)D�d =
n

(x1, . . . , xd) 2Rd : 0 < x1 < x2 < · · · < xd < n + 1
o

. (1.2)

Let’s explain the notation on the left-hand side: we define

D�d :=
n

(x1, . . . , xd) 2Rd : 0 < x1 < x2 < · · · < xd < 1
o

,

and for a set S ✓Rd and a positive integer n, we define

n S := {n x : x 2 S} ,

the n-th dilate of S. (We hope the notation in (1.2) now makes sense.) For
example, when d = 2,

D�2 =
n

(x1, x2) 2R2 : 0 < x1 < x2 < 1
o

is the interior of a triangle, and every integer point (x1, x2) in the (n + 1)-st
dilate of D�2 satisfies 0 < x1 < x2 < n + 1 or, equivalently, 1  x1 < x2  n.
We illustrate these integer points for the case n = 6 in Figure 1.9.

A convex lattice polygon P ⇢ R2 is the smallest convex set containing a
given finite set of non-collinear integer points in the plane. The interior
of P is denoted by P�. Convex polygons are 2-dimensional instances of
convex polytopes, which live in any dimension and whose properties we
will study in detail in Chapter 3. For now, we count on the reader’s intuition
about objects such as vertices and edges of a polygon, which will be defined
rigorously later on.

For a bounded set S ⇢ R2, we write E(S) := #(S \ Z2) for the number
of lattice points in S. Our example above motivates the definitions of the
counting functions

ehrP�(n) := E(nP�) = #
⇣

nP� \Z2
⌘

and
ehrP (n) := E(nP) = #

⇣

nP \Z2
⌘

,
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x1

x2

x2 = 7

x1 = x2

Fig. 1.9 The integer points in 7D�2.

called the Ehrhart functions of P , for reasons that will be explained in
Section 4.5.

As we know from (0.1), the number of integer lattice points in the (n + 1)-st
dilate of D�2 is given by the polynomial

ehrD�2 (n + 1) =
✓

n
2

◆

.

To make the combinatorial reciprocity statement given by (0.1) geometric,
we observe that the number of weak order preserving maps from [n] into
[2] is given by the integer points in the (n� 1)-st dilate of

D2 =
n

(x1, x2) 2R2 : 0 x1  x2  1
o

,

the closure of D�2. The combinatorial reciprocity statement given by (0.1) now
reads (�1)2(�n

2 ) equals the number of integer points in (n� 1)D2. Unraveling
the parameters (and making appropriate shifts), we can rephrase this as:
(�1)2 ehrD�2 (�n) equals the number of integer points in nD2. The reciprocity
theorem featured in this section states that this holds for all convex lattice
polygons; in Section 4.5 we will prove an analogue in all dimensions.

Theorem 1.15. Let P ⇢ R2 be a lattice polygon. Then ehrP (n) agrees with a
polynomial of degree 2 with rational coefficients, and (�1)2 ehrP (�n) equals the
number of integer points in the interior nP�.
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In the remainder of this section we will prove this theorem. The proof will
be a series of simplifying steps that are similar in spirit to those that we will
employ for the general result in Section 4.5.

As a first step, we reduce the problem of showing polynomiality for Ehrhart
functions of arbitrary lattice polygons to that of lattice triangles. Let P be a
lattice polygon in the plane with n vertices. We can triangulate P by cutting
the polygon along sufficiently many (exactly n� 3) non-intersecting diago-
nals, as in Figure 1.10. The result is a set of n� 2 lattice triangles that cover
P . We denote by T the collection of faces of all these triangles, that is, T
consists of n zero-dimensional polytopes (vertices), 2n� 3 one-dimensional
polytopes (edges), and n� 2 two-dimensional polytopes (triangles).

Fig. 1.10 A triangulation of a hexagon.

Our triangulation is a well-behaved collection of polytopes in the plane in
the sense that they intersect nicely: if two elements of T intersect, then they
intersect in a common face of both. This is useful, as counting lattice points
is a valuation:3 For S, T ⇢R2,

E(S [ T) = E(S) + E(T)� E(S \ T) , (1.3)

and applying the inclusion-exclusion relation (1.3) repeatedly to the elements
in our triangulation of P yields

ehrP (n) = Â
F2T

µT (F )ehrF (n) , (1.4)

where the µT (F )’s are some coefficients that correct for over-counting. If F
is a triangle, then µT (F ) = 1—after all, we want to count the lattice points
in P which is covered by the triangles. For an edge F of the triangulation,
we have to make the following distinction: F is an interior edge of T if it is
contained in two triangles. In this cases the lattice points in F get counted

3 We’ll have more to say about valuations in Section 3.2.



1.4 Ehrhart polynomials 21

twice and in order to compensate for this, we set µT (F ) = �1. In the case
that F is a boundary edge, i.e., F lies in only one triangle of T , there is no
over-counting and we can set µT (F ) = 0. To generalize this to all faces of
T , let’s call a face F 2 T a boundary face of T if F ⇢ ∂P and an interior
face otherwise. We can give the coefficients µT (F ) explicitly as follows.

Proposition 1.16. Let T be a triangulation of a lattice polygon P ⇢R2. Then the
coefficients µT (F ) in (1.4) are given by

µT (F ) =

(

(�1)2�dimF if F is interior,
0 otherwise.

For boundary vertices F = {v}, we can check that µT (F ) = 0 is correct: the
vertex is counted positively as a lattice point by every incident triangle and
negatively by every incident interior edge. As there are exactly one interior
edge less than incident triangles, we do not count the vertex more than once.
For an interior vertex, the number of incident triangles and incident (interior)
edges are equal and hence µT (F ) = 1. In triangulations of P obtained by
cutting along diagonals we never encounter interior vertices, however, they
will appear soon when we consider a different type of triangulation.

The coefficient µT (F ) for a triangulation of a polygon was easy to argue
and to verify in the plane. For higher-dimensional polytopes we will have
to resort to more algebraic and geometric means. The right algebraic setup
will be discussed in Chapter 2 where we will make use of the fact that a
triangulation T constitutes a partially ordered set. In the language of posets,
µT (F ) is an evaluation of the Möbius function for the poset T . Möbius
functions are esthetically satisfying but are in general difficult to compute.
However, we are dealing with situations with plenty of geometry involved
and we will make use of that in Chapter 5 to give a statement analogous to
Proposition 1.16 in general dimension.

Returning to our 2-dimensional setting, showing that ehrF (n) is a polyno-
mial whenever F is a lattice point, a lattice segment, or a lattice triangle
gives us the first half of Theorem 1.15. If F is a vertex, then ehrF (n) = 1. If
F 2 T is an edge of one of the triangles and thus a lattice segment, verifying
that ehrF (n) is a polynomial is the content of Exercise 1.37.

The last challenge now is the reciprocity for lattice triangles. For the rest of
this section, let 4⇢R2 be a fixed lattice triangle in the plane. The idea that
we will use is to triangulate the dilates n4 for n � 1, but the triangulation
will change with n. Figure 1.11 gives the picture for n = 1,2,3.

We trust that the reader can imagine the triangulation for all values of n.
The special property of this triangulation is that up to lattice translations,
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Fig. 1.11 Special triangulations of a lattice triangle.

there are only very few different pieces. In fact, there are only two different
lattice triangles used in the triangulation of n4: there is 4 itself and (lattice
translates of) the reflection of 4 in the origin, which we will denote by 4.
As for edges, we have three different kinds of edges, namely the edges |,

|, and |. Up to lattice translation, there is only one vertex •.

Now let’s count how many copies of each tile occur in these special triangula-
tions; let t(P ,n) denote the number of times P appears in our triangulation
of n4. As for triangles, we count

t(4,n) =

✓

n + 1
2

◆

and t( 4,n) =

✓

n
2

◆

.

For the interior edges, observe that each interior edge is incident to a unique
upside-down triangle 4and consequently

t( |,n) = t( |,n) = t( |,n) =

✓

n
2

◆

.

Similarly, for interior vertices, we get

t(•,n) =

✓

n� 1
2

◆

.

Thus with (1.4), the Ehrhart function for the triangle 4 is

ehr4(n) =

✓

n + 1
2

◆

E(4) +

✓

n
2

◆

E( 4)

�
✓

n
2

◆

�

E( |) + E( |) + E( |)
�

+

✓

n� 1
2

◆

E(•) .

(1.5)
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This proves that ehr4(n) agrees with a polynomial of degree 2, and together
with (1.4) this establishes the first half of Theorem 1.15.

To prove the combinatorial reciprocity of Ehrhart polynomials in the plane,
let’s make the following useful observation.

Proposition 1.17. If for every lattice polygon P ⇢ R2 we have that ehrP (�1)
equals the number of lattice points in the interior of P , then ehrP (�n) = E(nP�)
for all n � 1.

Proof. For fixed n � 1, let’s denote by Q the lattice polygon nP . We see that
ehrQ(m) = E(m(nP)) for all m � 1. Hence the Ehrhart polynomial of Q is
given by ehrP (mn) and for m = �1 we conclude

ehrP (�n) = ehrQ(�1) = E(Q�) = E(nP�)

which finishes our proof. ut

To establish the combinatorial reciprocity of Theorem 1.15 for triangles, we
can simply substitute n = �1 into (1.5) and use (0.2) to obtain

ehr4(�1) = E( 4)� E( |)� E( |)� E( |) + 3E(•) ,

which is exactly the number of interior lattice points of 4. Observing that
4 and 4have the same number of lattice points finishes the argument.

For the general case, Exercise 1.37 gives

ehrP (�1) = Â
F2T

E(F �) = E(P�)

and this (finally!) concludes our proof of Theorem 1.15.

Exercises 1.37 and 1.39 also answer the question why we carefully cut P
along diagonals (as opposed to cutting it up somehow to obtain triangles):
Theorem 1.15 is only true for lattice polygons. There are versions for poly-
gons with rational and irrational coordinates but they become increasingly
complicated. By cutting along diagonals we can decompose a lattice poly-
gon into lattice segments and lattice triangles. This part becomes nontrivial
already in dimension 3 and we will worry about this in Chapter 5.

In Exercise 1.41 we will look into the question as to what the coefficients
of ehrP (n), for a lattice polygon P , tell us. Let’s finish this chapter by
considering the constant coeffient c0 = ehrP (0). This is the most tricky
one, as we could argue that ehrP (0) = E(0P) and since 0P is just a single
point, we get c0 = 1. This argument is flawed: we defined ehrP (n) only for
n � 1. To see that this argument is, in fact, plainly wrong, let’s consider
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S = P1 [ P2 ⇢R2, where P1 and P2 are disjoint lattice polygons. Since they
are disjoint, ehrS(n) = ehrP1(n) + ehrP2(n). Now 0S is also just a point and
therefore

1 = ehrS(0) = ehrP1(0) + ehrP2(0) = 2.

It turns out that c0 = 1 is still correct but the justification will occupy most
of Section 3.2. In Exercise 1.42, you will prove a more general version for
Theorem 1.15 that dispenses of convexity.

1.5 Notes

Graph-coloring problems started as map-coloring problems, and so the
fact that the chromatic polynomial is indeed a polynomial was proved for
maps (in 1912 by George Birkhoff [15]) before Hassler Whitney proved it
for graphs in 1932 [80]. As we mentioned, the first proof of the four-color
theorem is due to Kenneth Appel and Wolfgang Haken [4, 5]. Theorem 7.18
is due to Richard Stanley [67]. We will give a proof from a geometric point
of view in Section 7.3.

As we already mentioned, the approach of studying colorings of planar
graphs through flows on their duals was pioneered by William Tutte [79],
who also conceived the 5-flow Conjecture. As we mentioned, this conjecture
becomes a theorem when “5” is replaced by “6”, due to Paul Seymour [62];
the 8-flow theorem had previously been shown by François Jaeger [41, 42].
Theorem 1.10 is due to Felix Breuer and Raman Sanyal [17]. We will give a
proof in Section 7.4.

Order polynomials were introduced by Richard Stanley [66, 71] as ‘chromatic-
like polynomials for posets’ (this is reflected in Corollary 1.14); Theorem
1.12 is due to him. We will study order polynomials in depth in Chapter 6.

Theorem 1.15 is essentially due to Georg Pick [52], whose famous formula is
the subject of Exercise 1.41. In some sense, this formula marks the beginning
of the study of integer-point enumeration in polytopes. Our phrasing of
Theorem 1.15 suggests that it has an analogue in higher dimension, and we
will study this analogue in Section 4.5.

Herbert Wilf [81] raised the question of characterizing which polynomials
can occur as chromatic polynomials of graphs. This question has spawned
a lot of work in the algebraic combinatorics. For example, a recent theo-
rem of June Huh [39] says that the absolute values of the coefficients of
any chromatic polynomial form a unimodal sequence, that is, the sequence
increases up to some point, after which it decreases. Huh’s theorem had
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been conjectured by Ronald Read [56] almost 50 years earlier. In fact, Huh
proved much more. In Chapter 7 we will study arrangements of hyperplanes
and their associated characteristic polynomials. Huh and later Huh and
Katz [40] proved that, up to sign, the coefficients of characteristic polynomi-
als of hyperplane arrangements (defined over any field) form a log-concave
sequence. We will later see the relation between chromatic and characteristic
polynomials.

We finish by mentioning one general problem, which fits the “big picture”
point-of-view of this introductory chapter: classify chromatic, flow, order,
and Ehrhart polynomials. What we mean is: give conditions on real numbers
a0, a1, . . . , ad that allow us to detect whether or not a given polynomial
ad nd + ad�1 nd�1 + · · ·+ a0 is, say, a chromatic polynomial.

Exercises

1.18. Let f (t) = adtd + ad�1td�1 + · · ·+ a0 2R[t] be a polynomial such that
f (n) is an integer for every integer n > 0. Give a proof or a counterexample
for the following statements.

(a) All coefficients ai are integers.

(b) f (n) is an integer for all n 2Z.

(c) If (�1)k f (�n) � 0 for all n > 0, then k = deg( f ).

1.19. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is
a bijection f : V1! V2 such that for all u,v 2 V1

uv 2 E1 if and only if f(u)f(v) 2 E2.

Let G be a planar graph and let G1 and G2 be the dual graphs for two
distinct planar embeddings of G. Is it true that G1 and G2 are isomorphic?

If not, can you give a sufficient condition on G such that the above claim
is true? (A precise characterization is rather difficult, but for a sufficient
condition you might want to contemplate Steinitz’s theorem [84, Ch. 4].)

1.20. Find two simple non-isomorphic graphs G and H with cG(n) = cH(n).
Can you find many (polynomial, exponential) such examples in the number
of nodes? Can you make your examples arbitrarily high connected?

1.21. Find the chromatic polynomials of
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(a) the wheel with d spokes (and d + 1 nodes); for example, the wheel with
6 spokes is this:

(b) the cycle on d nodes;

(c) the path on d nodes.

1.22. Show that if G has c connected components, then nc divides the poly-
nomial cG(n).

1.23. Complete the proof of Corollary 1.2: Let G be a loopless nonempty
graph on d nodes and cG(n) = cdnd + cd�1nd�1 + · · · + c0 its chromatic
polynomial. Then

(a) the leading coefficient cd = 1;

(b) the constant coefficient c0 = 0;

(c) (�1)d
cG(�n) > 0.

1.24. Prove that every complete graph Kd (a graph with d nodes and all
possible edges between them) has exactly d! acyclic orientations.

1.25. Find and prove a deletion–contraction formula for the number of
acyclic orientations of a given graph.

1.26. In this exercise you will give a deletion–contraction proof of Theorem
1.5.

(a) Verify that the deletion–contraction relation (1.1) implies for cG(n) :=
(�1)n

cG(�n) that

cG(n) = cG\e(n) + cG/e(n).

(b) Define XG(n) as the number of compatible pairs acyclic orientation r

and n-coloring c. Show XG(n) satisfies the same deletion–contraction
relation above.

(c) Infer that cG(n) = XG(n) by induction on |E|.

1.27. The complete bipartite graph Kr,s is the graph on the vertex set V =
{1,2, . . . ,r,10,20, . . . , s0} and edges E = {ij0 : 1 i  r,1 j  s}. Determine
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the chromatic polynomial cKr,s(n) for m,k � 1.
(Hint: Proper n-colorings of Kr,s correspond to pairs ( f , g) of maps f : [r]!
[n] and g : [s]! [n] with disjoint ranges.)

1.28. Prove Proposition 1.6: The flow-counting function jG(n) is indepen-
dent on the orientation of G.

1.29. Let G be a connected planar graph with dual G⇤. By reversing the steps
in our proof before Proposition 1.7, show that every (nowhere-zero) Zn-flow
f on G⇤ naturally gives rise to n different (proper) n-colorings on G.

1.30. Prove Proposition 1.9: If G is a bridgeless connected graph, then jG(n)
agrees with a monic polynomial of degree |E|� |V|+ 1 with integer coeffi-
cients.

1.31. Let G = (V, E) be a graph, and let n be a positive integer.

(a) Prove that

jG(n) 6= 0 implies jG(n + 1) 6= 0.

(Hint: use Tutte’s Lemma [78].)

(b) Even stronger, prove that

jG(n)  jG(n + 1) .

(This is nontrivial. But you will easily prove this after having read
Chapter 7.)

1.32. Let
r

G = (V, E,r) be an oriented graph and n � 2.

(a) Let f : E!Zn be a nowhere-zero Zn-flow and let e 2 E. Show that

f : E \ {e}!Zn

is a nowhere-zero Zn-flow on the contraction
r

G/e.

(b) For S ✓ V let Ein(S) be the in-coming edges, i.e., u! v with v 2 S and
u 2 V \ S and Eout(S) the out-going edges. Show that f : E! Zn is a
nowhere-zero Zn-flow if and only if

Â
e2Ein(S)

f (e) = Â
e2Eout(S)

f (e)

for all S ✓ V. (Hint: For the sufficiency contract all edges in S and V \ S.)
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(c) Infer that jG ⌘ 0 if G has a bridge.

1.33. Discover the notion of tensions.

1.34. Consider the Petersen graph G pictured in Figure 1.12.

Fig. 1.12 The Petersen graph.

(a) Show that jG(4) = 0.

(b) Show that the polynomial jG(n) has nonreal roots.

(c) Construct a planar4 graph whose flow polynomial has nonreal roots.
(Hint: think of the dual coloring question.)

1.35. Prove Proposition 1.13: Let
r

G = (V, E,r) be an acyclic graph and
P = P(

r

G) the induced poset. A map c : V! [n] is strictly compatible with
the orientation r of G if and only if c is a strictly order preserving map
P! [n].

1.36. Show that WP(n) is a polynomial in n.

1.37. Let S = conv
�

(a1
b1
), (a2

b2
)
 

with a1, a2,b1,b2 2Z, a lattice segment. Show
that

ehrS (n) = L n + 1

where L = gcd(a2 � a1,b2 � b1), the lattice length of S . Conclude further
that �ehrS (�n) is exactly the number of lattice points of nS other than the
endpoints, in other words,

(�1)dimS ehrS (�n) = ehrS�(n) .

4 The Petersen graph is a (famous) example of a nonplanar graph.
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Can you find an explicit formula for ehrS (n) when S is a segment with
rational endpoints?

1.38. Let O be a closed polygonal lattice path, i.e., the union of lattice
segments, such that any vertex on O lies on precisely two such segments,
and that topologically O is a closed curve. Show that

ehrO(n) = L n

where L is the sum of the lattice lengths of the lattice segments that make
up O or, equivalently, the number of lattice points on O.

1.39. Let v1,v2 2Z2, and let Q be the half-open parallelogram

Q := {lv1 + µv2 : 0 l,µ < 1}

Show (for example, by tiling the plane by translates of Q) that

ehrQ(n) = A n2

where A =

�

�

�

�

det
✓

a c
b d

◆

�

�

�

�

.

1.40. A lattice triangle conv{v1,v2,v3} is unimodular if v2 � v1 and v3 � v1
form a lattice basis of Z2.

(a) Prove that a lattice triangle is unimodular if and only if it has area 1
2 .

(b) Conclude that for any two unimodular triangles D1 and D2, there exist
T 2 GL2(Z) and x 2Z2 such that D2 = T(D1) + x.

(c) Compute the Ehrhart polynomials of all unimodular triangles.

(d) Show that any lattice polygon can be triangulated into unimodular
triangles.

(e) Use the above facts to give an alternative proof of Theorem 1.15.

1.41. Let P ⇢R2 be a lattice polygon, denote the area of P by A, the number
of integer points inside the polygon P by I, and the number of integer
points on the boundary of P by B. Prove that

A = I + 1
2 B� 1

(a famous formula due to Georg Alexander Pick). Deduce from this formulas
for the coefficients of the Ehrhart polynomial of P .
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1.42. Let P ,Q ⇢ R2 be lattice polygons, such that Q is contained in the
interior of P . Generalize Exercise 1.41 (i.e., both a version of Pick’s theorem
and the accompanying Ehrhart polynomial) to the “polygon with a hole”
P �Q. Generalize your formulas to a lattice polygon with n “holes” (instead
of one).



Chapter 2

Partially Ordered Sets

The mathematical phenomenon always develops out of simple arithmetic, so useful in everyday
life, out of numbers, those weapons of the gods: the gods are there, behind the wall, at play with
numbers.
Le Corbusier

Partially ordered sets, posets for short, made an appearance twice so far.
First (in Section 1.3) as a class of interesting combinatorial objects with a
rich counting theory that is intimately related to colorings and, second (in
Section 1.4), as a natural bookkeeping structure for geometric subdivisions
of polygons. In particular, the stage for the principle of overcounting-and-
correcting, more commonly referred to as inclusion–exclusion, is naturally
set in the theory of posets. Our agenda in this chapter is twofold: we need
to introduce machinery that will be crucial tools in later chapters, but we
will also prove our first combinatorial reciprocity theorems in a general
setting, from first principles—that is, without the geometric intuition that
will appear in later chapters (where we will revisit the theorems from this
chapter in light of the geometry). Let’s recall that for us, a poset P is a finite
set with a binary relation �P that is reflexive, transitive, and anti-symmetric.

2.1 Order Ideals and the Incidence Algebra

Let’s go back to the problem of counting order preserving maps, i.e., maps
f : P! [n] that satisfy

a �P b =) f(a)  f(b)

31
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for all a,b 2 P. The preimages f

�1(j), for j = 1,2, . . . ,n, partition P and
uniquely identify f, but from a poset point of view they do not have enough
structure. A better perspective comes from the following observation: Let
f : P! [2] be an order preserving map into the 2-chain, and let I := f

�1(1).
Now

y 2 I and x �P y =) x 2 I .

A subset I ✓P with this property is called an order ideal of P. Conversely,
if I ✓ P is an order ideal, then f : P ! [2] with f

�1(1) = I defines an
order preserving map. Thus, order preserving maps f : P ! [2] are in
bijection with the order ideals of P, of which there are exactly WP(2)
many. Although we will not need them here, we remark that, dually, the
complement F = P \ I of an order ideal is characterized by the property that
x ⌫ y 2 F implies x 2 F. Such a set is called a dual order ideal or filter.

To characterize general order preserving maps into chains in terms of P,
we note that every order ideal of [n] is principal, that is, every order ideal
I ✓ [n] is of the form

I = {j 2 [n] : j  k} = [k]

for some k. In particular, the preimage f

�1([k]) of an order ideal [k] ✓ [n] is
an order ideal of P, and this gives us the following bijection.

Proposition 2.1. Order preserving maps f : P! [n] are in bijection with multi-
chains1 of order ideals

? = I0 ✓ I1 ✓ I2 ✓ · · · ✓ In = P

of length n. The map f is strictly order preserving if and only if Ij \ Ij�1 is an
antichain for all j = 1,2, . . . ,n.

Proof. We only need to argue the second part. We observe that f is strictly
order preserving if and only if there are no elements x� y with f(x) = f(y).
Hence, f is strictly order preserving if and only if f

�1(j) = Ij \ Ij�1 does not
contain a pair of comparable elements. ut

The collection J (P) of order ideals of P is itself a poset under set inclusion,
which we call the lattice of order ideals or the Birkhoff lattice2 of P.
What we just showed is that WP(n) counts the number of multichains in
J (P) \ {?,P}. The next problem we address is counting multichains of
length n in general posets. To that end, we introduce an algebraic gadget:
The incidence algebra I(P) is a C-vector space spanned by those functions
a : P⇥P! C that satisfy

1 A multichain is a sequence of comparable elements, where we allow repetition.
2 The reason for this terminology will become clear shortly.
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a(x,y) = 0 whenever x 6� y .

We define the product of a, b : P⇥P! C as

(a ⇤ b)(r, t) := Â
r�s�t

a(r, s)b(s, t) ,

and together with d 2 I(P) defined by

d(x,y) :=

(

0 if x 6= y,
1 if x = y,

this gives I(P) the structure of an associative C-algebra with unit d. (Those
readers for whom this is starting to feel like linear algebra are on the right
track.) As we will see below, a distinguished role is played by the zeta
function z 2 I(P) defined by

z(x,y) :=

(

1 if x � y,
0 otherwise.

For the time being, the power of zeta functions lie in their powers.

Proposition 2.2. Let P be a finite poset and x,y 2 P. Then z

n(x,y) equals the
number of multichains

x = x0 � x1 � · · · � xn = y

of length n.

Proof. For n = 1, we have that z(x,y) = 1 if and only if x = x0 � x1 = y.
Arguing by induction, we can assume that z

n�1(x,y) is the number of
multichains of length n� 1 for all x,y 2P, and we calculate

z

n(x,z) = (zn�1 ⇤ z)(x,z) = Â
x�y�z

z

n�1(x,y) z(y,z) .

Every summand on the right is the number of multichains of length n� 1
ending in y that can be extended to z. ut

As an example, the zeta function for the poset in Figure 2.1 is given in matrix
form as
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x1

x2 x3 x4

x5

Fig. 2.1 A sample poset.

0

B

B

B

B

@

1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

1

C

C

C

C

A

.

We encourage the reader to see Proposition 2.2 in action and to compute
powers of this matrix.

As a milestone, Proposition 2.2 implies the following presentation of the
order polynomial of P which we introduced in Section 1.3.

Corollary 2.3. For a finite poset P, let J = J (P) be its lattice of order ideals and
z the zeta function of J . The order polynomial associated with P is given by

WP(n) = z

n(?,P) .

Identifying WP(n) with the evaluation of a power of z does not suggest that
WP(n) is the restriction of a polynomial (which we know to be true from
Exercise 1.36) but this impression is misleading: Let h 2 I(P) be defined by

h(x,y) :=

(

1 if x � y,
0 otherwise.

Then z = d + h and hence

z

n(x,y) = (d + h)n(x,y) =
n

Â
k=0

✓

n
k

◆

h

k(x,y) . (2.1)

Exercise 2.14 asserts that the sum on the right stops at the index k = |P| and
is thus a polynomial in n of degree |P|.
The arguments in the preceding paragraph are not restricted to posets
formed by order ideals, but hold more generally for any poset P that has a
minimum 0̂ and a maximum 1̂, i.e., 0̂ and 1̂ are elements in P that satisfy
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0̂� x� 1̂ for all x 2P. (For example, the Birkhoff lattice J (P) has minimum
? and maximum P.) Let’s record this:

Proposition 2.4. Let P be a finite poset with minimum 0̂, maximum 1̂, and zeta
function z. Then z

n(0̂, 1̂) is a polynomial in n.

To establish a reciprocity theorem for WP(n), we’d like to evaluate z

n(?,P)
at negative integers n, so we first need to understand when an element
a 2 I(P) is invertible. To this end, let’s pause and make the incidence
algebra a bit more tangible.

Choose a linear extension of P, that is, we label the d = |P| elements of
P by p1, p2, . . . , pd such that pi � pj implies i  j. (That such a labeling
exists is the content of Exercise 2.15.) This allows us to identify I(P) with a
subalgebra of the upper triangular (d⇥ d)-matrices by setting

a =
�

a(pi, pj)
�

1i,jd .

For example, for the poset D10 given in Figure 1.8, a linear extension is
given by (p1, p2, . . . , p10) = (1,5,2,3,7,10,4,6,9,8) and the incidence algebra
consists of matrices of the form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 5 2 3 7 10 4 6 9 8
1 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
5 ⇤ ⇤
2 ⇤ ⇤ ⇤ ⇤ ⇤
3 ⇤ ⇤ ⇤
7 ⇤

10 ⇤
4 ⇤ ⇤
6 ⇤
9 ⇤
8 ⇤

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

where the stars are the possible non-zero entries for the elements in I(P).
This linear-algebra perspective affords a simple criterion for when a is
invertible.

Proposition 2.5. A transformation a 2 I(P) is invertible if and only if a(x, x) 6= 0
for all x 2P.
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2.2 The Möbius Function and Order Polynomial Reciprocity

We now return to the stage set up by Corollary 2.3, namely, that

WP(n) = z

n
J (P)(?,P) .

We’d like to use this setup to compute WP(�n); thus we need to invert the
zeta function of P. Such an inverse exists by Proposition 2.5, and we call
µ := z

�1 the Möbius function of P. For example, the Möbius function of
the poset in Figure 2.1 is given in matrix form as

0

B

B

B

B

@

1 �1 �1 �1 2
0 1 0 0 �1
0 0 1 0 �1
0 0 0 1 �1
0 0 0 0 1

1

C

C

C

C

A

.

It is apparent that one can compute the Möbius function recursively, and
in fact, unravelling the condition that (µ ⇤ z)(x,z) = d(x,z) for all x,z 2 P
gives

µ(x,z) = � Â
x�y�z

µ(x,y) = � Â
x�y�z

µ(y,z) for x � z and

µ(x, x) = 1.
(2.2)

As a notational remark, the functions z, d, µ, and h depend on the underlying
poset P, so we will sometimes write zP, dP, etc., to make this dependence
clear. For an example, let’s consider the Möbius function of the Boolean
lattice Bd, the partially ordered set of all subsets of [d] ordered by inclusion.
For two subsets S✓ T ✓ [d], we have that µBd(S, T) = 1 whenever S = T and
µBr (S, T) = �1 whenever |T \ S| = 1. Although this is little data, we venture
that

µBd(S, T) = (�1)|T\S|. (2.3)

We dare the reader to prove this from first principles, or to appeal to the
results in Exercise 2.21 after realizing that Bd is the d-fold product of a
2-chain.

Towards the combinatorial reciprocity theorem for order polynomials (Theo-
rem 1.12) we note the following.

Proposition 2.6.

WP(�n) = z

�n
J (?,P) = µ

n
J (?,P) , (2.4)
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where J = J (P) is the Birkhoff lattice of P.

This proposition is strongly suggested by our notation but nevertheless
requires a proof.

Proof. Recall that z = d + h. Hence

z

�1 = (d + h)�1 = d� h + h

2 � · · ·+ (�1)d
h

d,

by the geometric series and Exercise 2.14. If we now take powers of z

�1 and
again appeal to the nilpotency of h, we calculate

z

�n =
d

Â
k=0

(�1)k
✓

n + k� 1
k

◆

h

k.

Thus the expression of z

n as a polynomial given in (2.1) together with the
fundamental combinatorial reciprocity for binomial coefficients (0.2) given
in the very beginning of the book proves the claim. ut

The right-hand side of (2.4) is

µ

n
J (?,P) = ÂµJ (I0, I1)µJ (I1, I2) · · ·µJ (In�1, In) (2.5)

where the sum is over all multichains of order ideals

? = I0 ✓ I1 ✓ · · · ✓ In = P

of length n. Our next goal is thus to understand the evaluation µJ (K, M)
where K ✓ M ✓P are order ideals. This evaluation depends only on

[K, M] := {L 2 J : K ✓ L ✓ M} ,

the interval from K to M in the Birkhoff lattice J .

Theorem 2.7. Let P be a finite poset and K✓M order ideals in J = J (P). Then

µJ (K, M) =

(

(�1)|M\K| if M \ K is an antichain,
0 otherwise.

Proof. Let’s first consider the (easier) case that M \ K is an antichain. In this
case K [ A is an order ideal for all A ✓ M \ K. In other words, the interval
[K, M] is isomorphic3 to the Boolean lattice Br for r = |M \ K| and hence,
with (2.3), we conclude µJ (K, M) = (�1)r.

3 Two posets P and Q are isomorphic if there is a bijection f : P! Q that satisfies
x �P y () f (x) �Q f (y).
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The case that M \ K contains comparable elements is a bit more tricky. We
can argue by induction on the length of the interval [K, M]. The base case
is given by the situation that M \ K consists of exactly two comparable
elements m � M and hence

µJ (K, M) = � µJ (K,K) � µJ (K,K [ {m}) = �1 � (�1) = 0

since K [ {m} is an order ideal that covers K in J .

For the induction step, we use (2.2), i.e.,

µJ (K, M) = �ÂµJ (K, L)

where the sum is over all order ideals L such that K ✓ L ⇢ M. By induction
hypothesis, µJ (K, L) is zero unless L \ K is an antichain and thus

µJ (K, M) = �Â
⇢

(�1)|L\K| : K ✓ L ⇢ M order ideal,
L \ K is an antichain

�

,

where we have used the already-proven part of the theorem. Now let m 2
M \ K be a minimal element. The order ideals L in the above sum can be
partitioned into those containing m and those who don’t. Both parts of this
partition have the same size: if m 62 L, then L [ {m} is also an order ideal.
If m 2 L, then L \ {m} is an admissible order ideal as well. (You should
check this.) Hence, the positive and negative terms cancel each other and
µJ (K, M) = 0. ut

With this we can give a purely combinatorial proof of Theorem 1.12.

Proof of Theorem 1.12. With Theorem 2.7, the right-hand side of (2.5) becomes
(�1)|P| times the number of multichains ?= I0 ✓ I1 ✓ · · ·✓ In = P of order
ideals such that Ij \ Ij�1 is an antichain for j = 1, . . . ,n. By Proposition 2.1
this is exactly (�1)|P|W�P(n), and this proves Theorem 1.12. ut

Our proof also gives us some structural insights into WP(n).

Corollary 2.8. Let P be a poset and 1  m  |P|. Then W(�k) = 0 for all 0 <
k < m if and only if P contains an m-chain.
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2.3 Zeta Polynomials, Distributive Lattices, and Eulerian
Posets

We now take a breath and see how far we can generalize (the assumptions
in) Theorem 1.12. Our starting point is Proposition 2.4: for a poset P that
has a minimum 0̂ and maximum 1̂, the evaluation

ZP(n) := z

n(0̂, 1̂)

is a polynomial in n, the zeta polynomial of P. For example, if we augment
the poset D10 in Figure 1.8 by a maximal element (think of the number 0,
which is divisible by all positive integers), Exercise 2.17 gives the accompa-
nying zeta polynomial as

ZP(n) = 1
24 n4 + 11

12 n3 + 35
24 n2 � 17

12 n + 1. (2.6)

In analogy with the combinatorial reciprocity theorem for order polynomials
(Theorem 1.12)—which are, after all, zeta polynomials of posets formed by
order ideals—we now seek interpretations for evaluations of zeta polynomi-
als at negative integers. Analogous to (2.4), we have

ZP(�n) = z

�n(0̂, 1̂) = µ

n(0̂, 1̂)

where µ is the Möbius function of P. Our above example zeta function
(2.6) illustrates that the quest for interpretations at negative evaluations is
nontrivial: here we compute

ZP(�2) = 3 and ZP(�3) = �3

and so any hope of a simple counting interpretation of ZP(�n) or �ZP(�n)
is shattered. On a more optimistic note, we can repeat the argument be-
hind (2.5):

ZP(�n) = µ

n(0̂, 1̂) = Âµ(x0, x1)µ(x1, x2) · · · µ(xn�1, xn) (2.7)

where the sum is over all multichains

0̂ = x0 � x1 � · · · � xn = 1̂

of length n. The key property that put (2.5) to work in our proof of Theorem
2.7 (and subsequently, our proof of Theorem 1.12) was that every summand
on the right-hand side of (2.5) was either 0 or (the same) constant. We thus
seek a class of posets where a similar property holds in (2.7).
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For two elements x and y in a poset P, consider all least upper bounds
of x and y, i.e., all z 2 P such that x � z and y � z and there is no w � z
with the same property. If such a least upper bound of x and y exists and is
unique, we call it the join of x and y and denote it by x _ y. Dually, consider
all greatest lower bounds of x and y; if a greatest lower bound exits and is
unique, we call it the meet of x and y and denote it by x ^ y.

A lattice4 is a poset in which meets and joins exist for any pair of elements.
Note that any finite lattice will necessarily have a minimum 0̂ and a max-
imum element 1̂. A lattice P is distributive if meets and joins satisfy the
distributive laws

(x ^ y) _ z = (x _ z) ^ (y _ z) and (x _ y) ^ z = (x ^ z) _ (y ^ z)

for all x,y,z 2P. The reason we are interested in distributive lattices is the
following famous result, whose proof is subject to Exercise 2.18.

Theorem 2.9. Every finite distributive lattice is isomorphic to the poset of order
ideals of some poset.

Let’s experience the consequences of this theorem. Given a finite distributive
lattice P, we now know that the Möbius-function values on the right-hand
side of (2.7) can be interpreted as stemming from the poset of order ideals of
some other poset. But this means that we can apply Theorem 2.7, in precisely
the same way we applied Theorem 2.7 in our proof of Theorem 1.12: the
right-hand side of (2.7) becomes (�1)|P| times the number of multichains
0̂ = x0 � x1 � · · · � xn = 1̂ such that the corresponding differences of order
ideals are all antichains. A moment’s thought reveals that this last condition
is equivalent to the fact that each interval [xj, xj+1] is a Boolean lattice. What
we have just proved is a combinatorial reciprocity theorem which, in a sense,
generalizes that of order polynomials (Theorem 1.12):

Theorem 2.10. Let P be a finite distributive lattice. Then (�1)|P|ZP(�n) equals
the number of multichains 0̂ = x0 � x1 � · · · � xn = 1̂ such that each interval
[xj, xj+1] is a Boolean lattice.

There is another class of posets that comes with a combinatorial reciprocity
theorem stemming from (2.7). To introduce it, we need a few more defini-
tions. A finite poset P is graded if every maximal chain in P has the same
length, which we call the rank of P. The length l[x,y] of an interval [x,y] in

4 This lattice is not to be confused with the integer lattice Z2 that made an appearance in
Section 1.4 and whose higher-dimensional cousins will play a central role in later chapters.
Both meanings of lattice are well furnished in the mathematical literature; we hope that
they will not be confused in this book.
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a poset P is the length of a maximal chain in [x,y]. A graded poset that has
a minimal and a maximal element is Eulerian if its Möbius function is

µ(x,y) = (�1)l[x,y].

We have seen examples of Eulerian posets earlier, for instance, Boolean
lattices. Another important class of Eulerian posets are formed by faces of
polyhedra, which we will study in the next chapter.

What happens with (2.7) when the underlying poset P is Eulerian? In this
case, the Möbius-function values on the right-hand side are determined
by the interval length, and so each summand on the right is simply (�1)r

where r is the rank of P. But then (2.7) says that ZP(�n) equals (�1)r

times the number of multichains of length n, which is z

n(0̂, 1̂) = ZP(n). This
argument yields a reciprocity theorem that relates the zeta polynomial of P
to itself:

Theorem 2.11. Let P be an Eulerian poset of rank r. Then

ZP(�n) = (�1)r ZP(n) .

We will come back to this result in connection with the combinatorial
structure of polytopes.

2.4 Möbius Inversion

Our use of the Möbius function to prove Theorem 1.12 is by far not the only
instance where this function is useful—zeta and Möbius functions make a
prominent appearance in practically all counting problems in which posets
play a structural role. The setting is the following: For a fixed poset P, we
want to know a certain function f : P! C but all we know is the function

g(y) = Â
x�y

f (x) c(x,y) (2.8)

where we can think of the c(x,y) as some coefficients distorting the given
function f . In such a situation, can we infer f from g? The typical situation
is given by

f�(y) := Â
x�y

f (x).

The right (algebraic) setting in which to address such questions is the
incidence algebra: Every a 2 I(P) defines a linear transformation on CP via
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(a f )(y) := Â
x2P

f (x)a(x,y) . (2.9)

In the warm-up Exercise 2.13 you are asked to verify that, with the above
definition, I(P) yields a right action on CP. Thus, in (2.8), f can be recovered
from g whenever c is invertible. For the zeta function, the procedure of
recovering f from f� goes by the name of Möbius inversion.

Theorem 2.12 (Möbius inversion). Let P be a poset, µ its associated Möbius
function, and f : P! C. Then

f�(y) = Â
x�y

f (x) () f (y) = Â
x�y

f�(x)µ(x,y) .

and, likewise,

f⌫(y) = Â
x⌫y

f (x) () f (y) = Â
x⌫y

µ(y, x) f⌫(x) .

Proof. The statement of the theorem is simply

µ f� = (µ ⇤ z) f = f

where we use µ = z

�1. However, it is instructive to do the yoga of Möbius
inversion

(µ f�)(z) = Â
y�z

f�(y)µ(y,z) = Â
y�z

Â
x�y

f (x)µ(y,z)

= Â
x�z

f (x) Â
x�y�z

µ(y,z) = Â
x�z

f (x)d(x,z)

= f (z) .

The second statement is verified the same way. ut

In a nutshell this is what we implicitly used in our treatment of Ehrhart
theory for lattice polygons in Section 1.4. The subdivision of a lattice polygon
P into triangles, edges, and vertices is a genuine poset P under inclusion.
The function f (x) is the number of lattice points in x ✓ R2 and we were
interested in the evaluation of f (P) = (µ f✓)(P).
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2.5 Notes

Posets and lattices originated in the nineteenth century but become subjects
of their own rights with the work of Garrett Birkhoff, who proved Theorem
2.9 [14], and Philip Hall [34].

The oldest type of Möbius function is the one studied in number theory,
which is the Möbius function (in a combinatorial sense) of the divisor lattice
(see Exercise 2.22(c)). The systematic study of Möbius functions of general
posets was initiated by Gian–Carlo Rota’s famous paper [58] which arguably
started modern combinatorics. Rota’s paper also put the idea of incidence
algebras on firm ground, but it can be traced back much further to Richard
Dedekind and Eric Temple Bell [72, Chapter 3]. Theorem 2.7 is known as
Rota’s crosscut theorem.

As we already mentioned in Chapter 1, order polynomials were introduced
by Richard Stanley [66, 71] as ‘chromatic-like polynomials for posets’. Stan-
ley’s paper [71] also introduced order polytopes, which form the geometric
face of order polynomials, as we will see in later chapters. Stanley intro-
duced the zeta polynomial of a poset in [68], the paper that inspired the
title of our book. Stanley also initiated the study of Eulerian posets in [70],
though, in his own words, “they had certainly been considered earlier.”

For (much) more on posets, lattices, and Möbius function, we recommend
[65] and [72, Chapter 3], which contains numerous open problems; we
mention one representative:

Let Pn be the set all partitions (whose definition is given in (4.1) below) of
a fixed positive integer n. We order the elements of Pn by refinement, i.e.,
given two partitions

�

a1, a2, . . . , aj
�

and (b1,b2, . . . ,bk) of n, we say that
�

a1, a2, . . . , aj
�

� (b1,b2, . . . ,bk)

if the parts a1, a2, . . . , aj can be partitioned into blocks whose sums are
b1,b2, . . . ,bk. Find the Möbius function of Pn.

Exercises

2.13. Show that (2.9) defines a right action of I(P) on CP. That is, I(P) gives
rise to a vector space of linear transformations on CP and (a ⇤ b) f = b(a f ),
for any a, b 2 I(P).
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2.14. Let P be a finite poset and recall that z = d+ h where h : P⇥P! {0,1}
with h(x,y) = 1 whenever x � y.

(a) Show that for x � y,

h

k(x,y) = #{x = x0 � x1 � x2 � · · · � xk�1 � xk = y} ,

the number of strict chains of length k in the interval [x,y].

(b) Infer that h is nilpotent, that is, h

k ⌘ 0 for k > |P|.
(c) For x,y 2P, do you know what (2d� z)�1(x,y) counts?

(d) Show that h

n
J (P)(?,P) is exactly the number of surjective order preserv-

ing maps P! [n].

2.15. Show that every finite poset P has a linear extension. (Hint: you can
argue graphically by reading the Hasse diagram or, more formally, by
induction on |P|.)

2.16. For fixed k,n 2Z>0 consider the map g : Bk!Z>0 given by

g(T) = |T|n.

Show that
k! S(n,k) = (g µBk )([k])

where S(n,k) is the Stirling number of the second kind. (Hint: k! S(n,k)
counts surjective maps [n]! [k].)

2.17. Compute the zeta polynomial of the poset D10 (see Figure 1.8) ap-
pended by a maximal element.

2.18. Prove Theorem 2.9: Every finite distributive lattice is isomorphic to
a poset of order ideals of some poset. (Hint: Given a distributive lattice
P, consider the subposet Q consisting of all join irreducible elements, i.e.,
those elements that cannot be written as the join of some other elements.
Show that Q is isomorphic to J (P).)

2.19. Let P be a finite graded poset that has a minimal and a maximal
element, and define the rank of x 2 P as the length of a maximal chain
ending in x. Prove that P is Eulerian if and only if for all x � y the interval
[x,y] has as many elements of even rank as of odd rank.

2.20. State and prove a result analogous to Corollary 2.8 for distributive
lattices.
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2.21. For posets (P1,�1) and (P2,�2), we define their (direct) product with
underlying set P1 ⇥P2 and partial order

(x1, x2) � (y1,y2) :() x1 �1 y1 and x2 �2 y2 .

(a) Show that every interval [(x1, x2), (y1,y2)] of P1 ⇥ P2 is of the form
[x1,y1]⇥ [x2,y2].

(b) Show that µP1⇥P2((x1, x2), (y1,y2)) = µP1(x1,y1)µP2(x2,y2).

(c) Show that the Boolean lattice Bn is isomorphic to the n-fold product of
the chain [2], and conclude that for S ✓ T ✓ [n]

µBn(S, T) = (�1)|T\S|.

2.22. (a) Let P = [d] be the d-chain. Show that for 1 i < j  d

µ[d](i, j) =

8

>

<

>

:

1 if i = j,
�1 if i + 1 = j,
0 otherwise.

(b) Write out the statement that Möbius inversion gives in this explicit case
and interpret it along the lines of the Fundamental Theorem of Calculus.

(c) The Möbius function in number theory is the function µ : Z>0 ! Z

defined for n 2 Z>0 as µ(n) = 0 if n is not squarefree, that is, if n is
divisible by a proper prime power and otherwise as µ(n) = (�1)r if n
is the product of r distinct primes. Show that for given n 2 Z>0, the
partially ordered set Dn of divisors of n is isomorphic to a direct product
of chains and use Exercise 2.21 to verify that µ(n) = µDn(1,n).

2.23. Given sets S1,S2, . . . ,Sn, let P be the poset of all possible intersections
of these sets, including the “empty intersection” S1 [ S2 [ · · · [ Sn, ordered
by the subset relation ✓. Compute the Möbius function of P, and apply
the Möbius inversion formula for the function f (S) = |S| (you should think
about the appropriate partner function g) to derive the inclusion–exclusion
principle

|S1 [ S2 [ · · · [ Sn| =

Â
1jn

�

�Sj
�

� � Â
1j<kn

�

�Sj \ Sk
�

� + · · · + (�1)n�1 |S1 \ S2 \ · · · \ Sn| .





Chapter 3

Polyhedral Geometry

One geometry cannot be more true than another; it can only be more convenient.
Jules Henri Poincaré

In this chapter we define the most convenient geometry for the combinatorial
objects from Chapter 1. To give a first impression of how geometry naturally
enters our combinatorial picture, let’s return to the problem of counting
multisubsets of size d of [n]. Every such multiset corresponds to a tuple
(t1, t2, . . . , td) 2Zd such that

1  t1  t2  · · ·  td  n .

Forgetting about the integrality of the ti, we obtain a genuine geometric
object as the solutions to this system of d + 1 linear inequalities:

nDd = {x 2Rd : 1 x1  x2  · · ·  xd  n} .

The d-multisubsets correspond exactly to the integer lattice points nDd \ Zd.
The set nDd is a polyhedron: a set defined by finitely many linear inequalities.
Polyhedra constitute a rich class of geometric objects, rich enough to capture
much of the enumerative combinatorics that we pursue in this book.

Besides introducing machinery to handle polyhedra, our main emphasis in
this chapter is on the faces of a given polyhedron. They form a poset that is
naturally graded by dimension, and counting the faces in each dimension
gives rise to the famous Euler–Poincaré formula. This identity is at play (often
behind the scenes) in practically all combinatorial reciprocity theorems that
we will encounter in later chapters.

47
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3.1 Polyhedra, Cones, and Polytopes

The building blocks for our geometric objects are given by halfspaces. To
this end, we define an affine hyperplane as a set of the form

H :=
n

x 2Rd : a x = b
o

for some normal a 2 Rd \ {0} and displacement b 2 R. We call H a linear
hyperplane if 0 2 H or, equivalently, b = 0. Every hyperplane H subdivides
the ambient space Rd into the two closed halfspaces

H� :=
n

x 2Rd : a x � b
o

and H :=
n

x 2Rd : a x  b
o

. (3.1)

From such halfspaces we can manufacture more complex objects that are
bounded by hyperplanes: A polyhedron Q✓Rd is the intersection of finitely
many halfspaces such as the one shown in Figure 3.1.

Fig. 3.1 A bounded polyhedron in the plane.

The term polyhedron appears in many parts of mathematics, unfortunately
with different connotations. To be more careful, we just defined convex
polyhedra. A set S ✓Rd is convex if for every p,q 2 S, the line segment

[p,q] := {(1� l)p + lq : 0 l  1}

with endpoints p and q is contained in S. Since hyperplanes and halfspaces
are convex, a finite intersection of halfspaces produces a convex object.
Nevertheless, we will drop the adjective “convex” and simply refer to Q as
a polyhedron.
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So, Q✓Rd is a polyhedron if there are hyperplanes Hi = {x2Rd : ai x = bi}
for i = 1,2, . . . ,k such that

Q =
k
\

i=1
Hi =

n

x 2Rd : ai x  bi for all i = 1,2, . . . ,k
o

. (3.2)

We call a halfspace Hj irredundant if
T

i 6=j Hi 6=Q. We might as well only
use irredundant halfspaces to describe a given polyhedron. By arranging
the normals to the hyperplanes as the rows of a matrix A 2Rk⇥d and letting
b = (b1,b2, . . . ,bk), we compactly write

Q =
n

x 2Rd : A x  b
o

.

Trivially, all affine subspaces, including Rd and ?, are polyhedra.

As in all geometric disciplines, a fundamental notion is that of dimension.
For polyhedra, this turns out to be pretty straightforward. We define the
affine hull aff(Q) of a polyhedron Q ✓Rd as the smallest affine subspace
of Rd that contains Q. The reader might want to check (in Exercise 3.15) that

aff(Q) =
\

{Hi : Q ✓ Hi} . (3.3)

The dimension of a polyhedron is the dimension of its affine hull. When
dimQ = d, we call Q a d-polyhedron.

The (topological) interior of a polyhedron Q given in the form (3.2) is
n

x 2Rd : ai x < bi for all i = 1,2, . . . ,k
o

. (3.4)

However, that notion of interior is not intrinsic to Q but makes reference
to the ambient space. For example, a triangle might or might not have
an interior depending whether we embed it in R2 or R3. Luckily, every
polyhedron comes with a canonical embedding into its affine hull and we
can define the relative interior as the set of points of Q that are in the
interior of Q relative to its embedding into aff(Q). We will denote the
relative interior of Q by Q�. When Q is full dimensional, Q� is given by
(3.4). In the case that Q is not full dimensional, we have to be a bit more
careful (the details are the content of Exercises 3.18 and 3.19): Assuming Q
is given in the form (3.2), let I(Q) := {i 2 [n] : aip = bi for all p 2Q}. Then

Q� = {x 2Q : ai x < bi for all i 62 I(Q)} .

Complementary to the affine hull of a polyhedron Q, we define the lin-
eality space lineal(Q) ✓Rd to be the inclusion-maximal linear subspace of
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Rd such that there exists q 2 Rd for which q + lineal(Q) ✓ Q. It follows
from convexity that p + lineal(Q) ✓ Q for all p 2 Q; see Exercise 3.21. If
lineal(Q) = {0} we call Q pointed or line-free.

Fig. 3.2 Two polyhedral cones, one of which is pointed.

A set C ✓ Rd is called a convex cone if C is a convex set such that µC ✓ C
for all µ � 0. In particular, every linear subspace is a convex cone and,
stronger, any intersection of linear halfspaces is a cone. Intersections of
finitely many linear halfspaces are called polyhedral cones; see Figure 3.2
for two examples and Exercise 3.22 for more. Not all cones are polyhedral:
for example,

C =
n

(x,y,z) 2R3 : z � x2 + y2
o

is a cone but not polyhedral (Exercise 3.23). To ease notation, we will
typically drop the annotation, as henceforth all the cones to be encountered
will be polyhedral. We remark (Exercise 3.24) that a cone C is pointed if and
only if p,�p 2 C implies p = 0.

A connection between convex sets and convex cones is the following: For a
convex set K ⇢Rd we define the homogenization of K as

hom(K) :=
n

(p,l) 2Rd+1 : l � 0, p 2 lK
o

.

In particular, for a polyhedron Q = {x 2Rd : Ax  b} the homogenization
is a polyhedral cone given by

hom(Q) =
n

(x,l) 2Rd+1 : l � 0, Ax  lb
o

.

We can recover our polyhedron Q from its homogenization as the set of
those points p 2 hom(Q) for which pd+1 = 1. Moreover, hom(Q) is pointed
if and only if Q is. Homogenization seems like a simple construction but it
will come in handy in this chapter and later ones. The homogenization of a
hexagon is shown in Figure 3.2.
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As the class of convex sets is closed under taking intersections, there is
always a unique inclusion-minimal convex set conv(S) containing a given
set S ✓ Rd. This set is thus the intersection of all convex sets containing S
and is called the convex hull of S. For finite S, the resulting objects will
play an important role: A (convex) polytope P ⇢ Rd is the convex hull of
finitely many points in Rd. Thus the polytope defined as the convex hull of
S = {p1,p2, . . . ,pm} is

conv(S) =

(

l1p1 + l2p2 + · · · + lmpm :
m

Â
i=1

li = 1, l1,l2, . . . lm � 0

)

.

This construction is the essence of “closed under taking line segments”; see
Exercise 3.25. Similar to our definition of irredundant halfspaces, we call
v 2 S a vertex of P := conv(S) if P 6= conv(S \ {v}), and we let vert(P)✓ S
denote the collection of vertices of P . This is the unique inclusion-minimal
subset T ✓ S such that P = conv(T); see Exercise 3.26.

Likewise, the convex cones are closed under taking intersections, and so
we define the conical hull cone(S) of a set S ✓ Rd as the smallest convex
cone that contains S. The homogenization of a polytope P is thus given by
(Exercise 3.28)

hom(P) = cone(P ⇥ {1}) = cone{(v,1) : v 2 vert(P)} (3.5)

and, as above, the polytope P can be recovered by intersecting hom(P)
with the hyperplane H = {(x, xd+1) 2Rd+1 : xd+1 = 1}. This relation holds
in somewhat greater generality—see Exercise 3.29.

A special class of polytopes consists of the simplices: A d-simplex D is the
convex hull of d + 1 affinely independent points in Rn. Simplices are the
natural generalizations of line segments, triangles, and tetrahedra to higher
dimensions.

It turns out that polyhedra and convex/conical hulls of finite sets are two
sides of the same coin. To make this more precise, we need the following
notion: The Minkowski sum of two convex sets K1,K2 ⇢Rd is the set

K1 +K2 := {p + q : p 2 K1, q 2 K2} .

An example is depicted in Figure 3.3. That K1 + K2 is again convex is
the content of Exercise 3.31. Minkowski sums are key to the following
fundamental theorem of polyhedral geometry.

Theorem 3.1 (Minkowski–Weyl). A set Q ✓ Rd is a polyhedron if and only if
there exist a polytope P and a polyhedral cone C such that
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+ =

Fig. 3.3 A Minkowski sum.

Q = P + C .

This theorem highlights the special role of polyhedra among all convex
bodies. It states that polyhedra possess a discrete intrinsic description in
terms of finitely many vertices and generators of P and C, respectively, as
well as a discrete extrinsic description in the form of finitely many linear
inequalities. The benefit of switching between different presentations is
apparent. As a first application we get the following nontrivial operations
on polyhedra, polytopes, and cones.

Corollary 3.2. Let Q ⇢Rd be a polyhedron and f(x) = A x + b an affine projec-
tion Rd!Re. Then f(Q) is a polyhedron. If P ⇢Rd is a polytope, then P \Q
is a polytope.

A hyperplane H := {x 2 Rd : a x = b} is a supporting hyperplane of the
polyhedron Q if

Q\H 6=? and either Q✓
n

x 2Rd : a x  b
o

or Q✓
n

x 2Rd : a x � b
o

,

in words, Q is entirely contained in one of the halfspaces bounded by H. A
face of Q is a set of the form Q \ H, where H is a supporting hyperplane
of Q; we always include Q itself (and sometimes ?) in the list of faces of Q.
The 0-dimensional faces of Q are precisely the vertices of Q (Exercise 3.26).
The faces of dimension 1 and d� 1 of a d-dimensional polyhedron Q are
called edges and facets, respectively. It follows almost by definition that a
face of a polyhedron is a polyhedron (Exercise 3.32). An equally sensible
but somewhat less trivial fact is that every face of a polyhedron Q is the
intersection of some facets of Q (Exercise 3.33).

The faces of a given d-polyhedron Q (including ?) are naturally ordered by
set containment, which gives rise to a poset (in fact, a lattice), the face lattice
F(Q). Figure 3.4 gives an example, the face lattice of a square pyramid.

In a sense, much of what remains in this chapter is devoted to face lattices of
polyhedra. For starters, we note that F(Q) is naturally graded by dimension,
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Fig. 3.4 The face lattice of a square pyramid.

which is one of many motivations to introduce the face numbers

fk = fk(Q) := # faces of Q of dimension k.

The face numbers are often recorded in the f -vector

f (Q) := ( f0, f1, . . . , fd�1)

It is not hard to see (Exercise 3.27) that the j-faces of a d-polytope P are
in bijection with the (j + 1)-faces of hom(P) for all j = 0,1, . . . ,d, and so, in
particular,

f (hom(P)) = (1, f (P)) .

3.2 The Euler Characteristic

We will now come to an important notion that will allow us to relate
geometry to combinatorics, the Euler characteristic. Our approach to the
Euler characteristics of convex polyhedra is by way of sets built up from
polyhedra. A set S ✓ Rd is polyconvex if it is the union of finitely many
relatively open polyhedra in Rd:

S = P1 [ P2 [ · · · [ Pk

where P1, . . . ,Pk ✓Rd are relatively open polyhedra. For example, a polyhe-
dron is polyconvex: we can write it as the (disjoint) union of its relatively
open faces. Note, however, that our definition entails that, in general, poly-
convex sets are not necessarily convex, not necessarily connected, and not
necessarily closed. As we will see, they form a good basis of sets to draw
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from, but not every reasonable set, such as the unit disc in the plane, is
a polyconvex set. Let’s denote by PC the collection of polyconvex sets in
Rd. This is an (infinite) poset under inclusion with minimal and maximal
elements ? and Rd, respectively. Of course, the intersection and the union of
finitely many polyconvex sets is polyconvex, which renders PC a distributive
lattice.

A map f from PC to an Abelian group is a valuation if

f(S [ T) = f(S) + f(T)� f(S \ T) (3.6)

for all S, T 2 PC. Here is what we’re after:

Theorem 3.3. There exists a unique valuation c : PC! Z such that c(?) = 0
and c(P) = 1 for every nonempty polytope P ⇢Rd.

This is a nontrivial statement as we cannot just define c(S) = 1 whenever
S 6= ?. Indeed, if P ⇢ Rd is a d-polytope and H = {x 2 Rd : a x = b} is a
hyperplane such that H \ P 6= ?, then

P1 := {x 2 P : a x < b} and P2 := {x 2 P : ax � b} .

are polyconvex sets such that P1 \ P2 = ? and thus

c(P) = c(P1) + c(P2) .

Therefore, if c is the valuation of Theorem 3.3, then we need to have c(P1) =
0. The valuation property will be the key to simplifying the computation
of c(S) for arbitrary polyconvex sets: If S = P1 [ P2 [ · · · [ Pk where each
Pi ✓Rd is a relatively open polyhedron, then iterating (3.6), we obtain the
inclusion–exclusion formula

c(S) = Â
i

c(Pi)�Â
i<j

c(Pi \ Pj) + · · · = Â
? 6=I✓[k]

(�1)|I|�1
c(PI) (3.7)

where PI := \i2IPi. In particular, the value of c(S) does not depend on the
presentation of S as a union of relatively open polyhedra.

Here is a way to construct polyconvex sets. Let H = {H1, H2, . . . , Hn} be an
arrangement (i.e., a finite set) of n hyperplanes Hi = {x 2Rd : ai x = bi} in
Rd. An example of an arrangement of 6 hyperplanes in the plane is show
in Figure 3.5. Continuing with our definitions in (3.1), for a hyperplane Hi,
we denote by

H>
i := {x : ai x > bi}

the open positive halfspace bounded by H. We analogously define H<
i and

H=
i := Hi. For every s 2 {<,=,>}n, we get a (possibly empty) relatively
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Fig. 3.5 An arrangement of 6 lines in the plane.

open polyhedron
H

s

:= Hs1
1 \ Hs2

2 \ · · · \ Hsn
n , (3.8)

and these relatively open polyhedra partition Rd. For a point p 2 Rd, let
s(p) 2 {<,=,>}d record the position of p relative to the n hyperplanes,
that is, H

s(p) is the unique relatively open polyhedron among the H
s

s
containing p. For example, the arrangement in Figure 3.5 decomposes R2

into 19 regions.

For a fixed hyperplane arrangement H, we define the class of H-polyconvex
sets PC(H) ⇢ PC as those sets S ✓ Rd that are finite unions of relatively
open polyhedra of the form H

s

given by (3.8). That is, every S 2 PC(H) has
a representation

S = H
s

1 ] H
s

2 ] · · · ] H
s

k (3.9)

for some s

1,s

2, . . . ,s

k 2 {<,=,>}n such that H
s

j 6= ? for all j = 1,2, . . . ,k.
Note that the relatively open polyhedra H

s

j are disjoint and thus the repre-
sentation of S given in (3.9) is unique. For S 2 PC(H) we define

c(H,S) :=
k

Â
j=1

(�1)dim H
s

j . (3.10)

The next result (whose proof we leave as Exercise 3.35), states that this
function is a valuation.

Proposition 3.4. The function c(H, ·) : PC(H)!Z is a valuation.
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We can consider c(H,S) as a function in two arguments, the arrangement
H and the set S✓Rd. This comes from the property that sets S are typically
polyconvex with respect to various arrangements. However, it is a priori not
clear how the value of c(H,S) changes when we change the arrangement.
The power of our above definition is that it doesn’t:

Lemma 3.5. Let H1,H2 be two hyperplane arrangements in Rd and let S 2
PC(H1) \ PC(H2). Then

c(H1,S) = c(H2,S) .

Proof. We note that it is sufficient to show that

c(H1,S) = c(H1 [ {H},S) where H 2H1 \ H2 . (3.11)

Iterating this, we get c(H1,S) = c(H1 [H2,S) and c(H2,S) = c(H1 [H2,S)
which proves the claim.

As a next simplifying measure, observe that it is sufficient to show (3.11) for
S = H

s

. Indeed, from the representation in (3.9), we then get

c (H1,S) = c (H1, H
s

1) + c (H2, H
s

2) + · · ·+ c (Hk, H
s

k ) .

Now suppose that S = H
s

2 PC(H1) and H 2H1 \H2. There are three cases
how S can lie relative to H. The easiest cases are S \ H = S and S \ H = ?.
In both cases S is genuinely a polyconvex set for H1 [ {H} and

c(H1 [ {H},S) = (�1)dimS = c(H1,S) .

The only interesting case is ? 6= S \ H 6= S. Since S is relatively open, S< :=
S \ H< and S> := S \ H> are both nonempty, relatively open polyhedra
of dimension dimS, and S= := S \ H= is relatively open of dimension
dimS� 1. Therefore, S = S< ] S= ] S> is a presentation of S as an element
of PC(H1 [ {H}) and

c(H1 [ {H},S) = c(H1 [ {H},S<) + c(H1 [ {H},S=) + c(H1 [ {H},S>)

= (�1)dimS + (�1)dimS�1 + (�1)dimS

= c(H1,S)

proves the claim. ut

The argument used in our proof is typical when working with valuations.
The valuation property (3.6) allows us to refine polyconvex sets by cutting
them with hyperplanes and halfspaces. Clearly, there is no finite subset of
hyperplanes H such that PC = PC(H), but as long as we only worry about
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finitely many polyconvex sets at a time, we can restrict ourselves to PC(H)
for some H.

Proposition 3.6. Let S 2 PC be a polyconvex set. Then there is a hyperplane
arrangement H such that S 2 PC(H).

Proof. This should be intuitively clear. We can write S = P1 [ P2 [ · · · [ Pk
where Pi are a relatively open polyhedra. Now for every Pi there is a finite
set of hyperplanes Hi := {H1, H2, . . . , Hm} such that Pi =

T

j H
sj
j for some

s 2 {<,=,>}m. Thus, Pi 2 PC(Hi) and by refining we get S 2 PC(H1 [
H2 [ · · · [Hk). ut

We can express the content of Proposition 3.6 more conceptual. For two
hyperplane arrangements H1 and H2,

H1 ✓H2 =) PC(H1) ✓ PC(H2) .

This gives us the first half of Theorem 3.3:

Proposition 3.7. There is unique valuation c : PC!Z such that for S 2 PC,

c(S) = c(H,S)

for all hyperplane arrangements H for which S 2 PC(H).

Proof. For a given S 2 PC, we define c(S) := c(H,S) for any H such that
S 2 PC(H). By Proposition 3.6 this is well defined. For uniqueness, observe
that c(P) = (�1)dimP for all relatively open polyhedra P and by refinement,
we can write any S 2 PC as a disjoint union of finitely many relatively open
polyhedra. This also shows the inclusion–exclusion property. ut

Looking back at (3.10), Proposition 3.7 immediately implies:

Corollary 3.8. If P is a relatively open polyhedron then c(P) = (�1)dimP .

What is left to show is that c(P) = 1 whenever P is a (nonempty) polytope.
Let’s first note that (3.10) gives us an effective way to compute the Euler
characteristic of a polyhedron: if Q is a polyhedron, then Q is the disjoint
union of the relative interiors of its faces, that is,

Q =
]

F✓Q
F face

F�

and
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c(Q) = Â
F 6=? face

(�1)dim F =
dimQ
Â
i=0

(�1)i fi(Q) . (3.12)

This is called the Euler–Poincaré formula. From it we instantly obtain

c(?) = 0 and c(Rd) = (�1)d.

Recall that the homogenization of P is the pointed, polyhedral cone
hom(P) ⇢ Rd+1 with the property that the i-faces of P are in bijection
with (i + 1)-faces of hom(P) for all i = 0,1, . . . ,d. Hence

c(hom(P)) = Â
F✓hom(P)

(�1)dim F = 1� Â
F✓P

(�1)dim F = 1� c(P) .

We therefore complete the proof of Theorem 3.3 by establishing the following
statement.

Proposition 3.9. If C ⇢ Rd+1 is a full-dimensional polyhedral cone that is not a
linear space, then c(C) = 0.

In preparation, we note a special property of polyconvex sets: If S 2 PC then
so is S := Rd \ S. Thus, for a polyconvex set S ✓Rd,

(�1)d = c(S) + c(S) ,

and we may compute the Euler characteristic of S if this seems easier. For
pointed polyhedral cones this is indeed the case.

Proof of Proposition 3.9. Let

C =
n

x 2Rd+1 : ai x  0 for i = 1,2, . . . ,m
o

be a polyhedral cone. If C is full-dimensional and proper, then m � 1 and
there is a point p2 C such that ai p < 0 for all 1 im. Let Hi = {x : ai x = 0}
be the hyperplanes corresponding to the halfspaces that bound C. The
complement of C is the union of the open halfspaces H>

i . Thus inclusion–
exclusion gives

c

⇣

Rd+1 \ C
⌘

= c

�

H>
1 [ · · · [ H>

m
�

= Â
? 6=I✓[m]

(�1)|I|�1
c

�

H>
I
�

where we set H>
I :=

T

i2I H>
i . As all H>

i are linear halfspaces, the sets H>
I

are either empty or open polyhedra of dimension d + 1. But the former can
not happen: we have ai(�p)> 0 for all i = 1,2, . . . ,m and therefore �p 2 H>

I
for all I ✓ [m]. Thus the right-hand side of the above equation is
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Â
? 6=I✓[m]

(�1)|I|�1(�1)d+1 = �(�1)d+1
m

Â
i=1

✓

m
i

◆

(�1)i = (�1)d+1.

Thus c(C) = c(Rd+1) = (�1)d+1 and hence c(C) = 0. ut

To make our discussion of Euler characteristics of polyhedra complete, we
need to treat two more cases. The easier one is that of polyhedra with a
nontrivial lineality space.

Corollary 3.10. Let Q be a polyhedron with lineality space L = lineal(Q), then

c(Q) = (�1)dim L
c(Q/L).

This is pretty straightforward considering the relationship between faces and
their dimensions of Q and Q/L; we’ll leave the details to Exercise 3.36. A
generalization of Proposition 3.9 to general pointed, unbounded polyhedra
is as follows.

Corollary 3.11. Let Q be a pointed polyhedron. If Q is unbounded, then c(Q) = 0.

Proof. Add proof: Euler characteristic is difference of Euler characteristics
of two polytopes. ut

Make relation between faces faces of Q and faces of hom(Q) clear. In
particular, faces of hom(Q) contained in {xd+1 = 0} are faces of Q at
infinity.

3.3 Möbius Functions of Face Lattices

Euler characteristics are fundamental throughout mathematics. In the con-
text of geometric combinatorics they tie together the combinatorics and the
geometry of polyhedra in an elegant way. A first evidence of this is provided
by the central result of this section: The Möbius function of the face lattice
of a polyhedron can be computed in terms of Euler characteristics.

Theorem 3.12. Let Q be a polyhedron with face lattice F = F(Q). For any two
faces F, G 2 F with F ✓ G,

µF(F, G) = (�1)dim G�dim F.
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Towards a proof of this result, note that we can safely assume that Q
is pointed: Eliminating the lineality space from Q leaves the face lattice
unchanged while, at the same time,

dim(G/lineal(Q))� dim(F/lineal(Q)) = dim G� dim F .

Let y(F, G) := (�1)dim G�dim F, and recall from Section 2.2 that the Möbius
function µF is the inverse of the zeta function zF and hence unique. Thus,
to prove the claim in Theorem 3.12 that µF(F, G) = y(F, G) it is sufficient
to show that y satisfies the defining relations (2.2) for the Möbius function.
That is, we have to show that y(F, F) = 1 and, for F ⇢ G,

Â
K

y(K, G) = 0 (3.13)

where the sum is over all faces K of G that contain F. That y(F, F) = 1 is
clear from the definition, so the meat lies in (3.13).

Let’s first consider the case where Q is a pointed polyhedral cone and
F = {0} is the apex of Q. Any nonempty face G of Q is itself a pointed cone
and (3.13) is a sum over all nonempty faces K of G. We calculate

Â
K
(�1)dim G�dimK = (�1)dim G Â

K
(�1)dimK = (�1)dim G

c(G) ,

where the last equality stems from the Euler–Poincaré formula (3.12). Since
G is pointed and unbounded, Corollary 3.11 asserts that c(G) = 0, which
finishes this special case.

This also proves the case where Q is a pointed polyhedron and F = ? is
the empty face, since we can pass from Q to hom(Q): For any nonempty
face G of Q, the interval [?, G] in F(Q) is isomorphic to [{0},hom(G)] in
F(hom(Q)).

For general F and Q would like to make the same argument—that (3.13)
basically computes the Euler characteristic of a polyhedral cone. To achieve
this, we take a route that emphasizes the general geometric idea of approxi-
mating geometric objects locally by simpler ones. Namely, we will associate
to the face F a polyhedral cone that captures the structure around F.

Let Q ✓ Rd be a polyhedron and q 2 Q. The tangent cone of Q at q is
defined by

TqQ := {q + u 2Rd : q + eu 2Q for some e > 0} = q + cone(Q� q) .

The latter characterization yields that TqQ is a translate of cone(Q � q)
which justifies the name. In particular, TqQ is a polyhedron of dimension
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dim TqQ = dimQ. The first thing to note is that the tangent cone only
depends on the unique face of Q that contains q in its relative interior and
is thus geared to capture the local neighborhood of faces.

Proposition 3.13. Let Q⇢Rd be a polyhedron and F ⇢Q a nonempty face. Then

TpQ = TqQ

for any p and q in the relative interior of F.

Proof. Let F be a face of

Q =
n

x 2Rd : aix  bi for all i = 1,2, . . . ,n
o

,

let p and q be in the relative interior of F, and let u2Rd such that p+ eu2Q
for some e > 0, that is, bi � ai(p + eu) for all i. In particular, if I := {i : aip =
bi}, then aiu > 0 for all i 2 I.

Now if q + u 62 TqQ, then this means that q + du 62 Q for all d > 0. This
implies that there is some i such that aiq = bi and aiu < 0. Since p and q
are in the relative interior of F, we have that aiq = bi for all i 2 I which
contradicts that aiu < 0. ut

Proposition 3.13 suggests that we can define the tangent cone of a face F of
Q as TFQ := TqQ where q 2 F�. In particular, the lineality space of TFQ is

lineal(TFQ) = aff(F)� q

and TFQ/lineal(TFQ) is a pointed but unbounded polyhedron except for
the case F =Q. Here we have TQQ = Rd.

Our interest in tangent cones comes from the fact that the facial structure of
TFQ is intimately related to the interval [F,Q]in F(Q):

Lemma 3.14. Let Q be a polyhedron and F a k-dimensional face of Q. There is an
inclusion-preserving bijection between the l-dimensional faces of Q that contain
F and the (l � k)-dimensional faces of TFQ. In other words, F(TFQ) \ {?} and
[F,Q] are isomorphic as posets.

Proof. Add proof ut

With Lemma 3.14 in hand, we can finally prove Theorem 3.12.

Proof of Theorem 3.12. Let F ⇢ G be faces of Q. Since the value of µF(F, G)
depends only on [F, G], an interval in F(G), we might as well assume that
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G =Q. Lemma 3.14 allows us to pass to TFQ and deduce

µF(Q)(F,Q) = µF(TFQ)(lineal(TFQ), TFQ) = (�1)dim F
c(TFQ) = 0,

which completes the proof. ut

3.4 Notes

The 3-dimensional case of (3.12) was proved by Leonard Euler in 1752
[27, 28]. The full (i.e., higher-dimensional) version of (3.12) was discovered
by Ludwig Schläfli in 1852 (though published only in 1902 [60]), but Schläfli’s
proof implicitly assumed that every polytope is shellable (as did numerous
proofs of (3.12) that followed Schläfli’s), a fact that was established only in
1971 by Heinz Bruggesser and Peter Mani [19]. The first “airtight” proof
of (3.12) (in 1893, using tools from algebraic topology) is due to Henri
Poincaré [53] (see also, e.g., [35, Theorem 2.44]).

As already mentioned in Chapter 1, classifying face numbers is a major
research problem; in dimension 3 this question is answered by Steinitz’s
theorem [76] (see also [84, Lecture 4]). The classification question is open
in dimension 4. One can also ask a similar question for certain classes of
polyhedra, e.g., simplicial polytopes, i.e., polytopes all of whose faces are
simplices. This gives rise to the famous Dehn–Sommerville equations which
we will come across in Section ??.

For (much) more about the wonderful combinatorial world of polyhedra,
including proofs of the Minkowski–Weyl Theorem, we recommend [33, 84].

Add more Notes

Exercises

3.15. Prove (3.3), namely, that for a polyhedron given in the form (3.2),

aff(Q) =
\

{Hi : Q ✓ Hi} .

3.16. Let Q be a polyhedron given in the form (3.2), and consider a face F
of Q. Renumber the hyperplanes H1, H2, . . . Hk so that F ✓ Hj for 1 j  m
and F 6✓ Hj for j > m, for some index m. Prove that
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F =
m
\

j=1
Hj \

k
\

j=m+1
Hj .

3.17. Let P be the convex hull of the finite set S. Prove that vert(P) is the
unique inclusion-minimal subset T ✓ S with P = conv(T).

3.18. Let Q = {x 2 Rd : ai x  bi for i = 1, . . . ,k} be a full-dimensional poly-
hedron. For p 2 Rd and e > 0, let B(p,e) be the ball of radius e centered
at p. A point p 2Q is an interior point of Q if B(p,e) ✓Q for some e > 0.
Show that (3.4) is exactly the set of interior points.

3.19. Let Q= {x2Rd : ai x bi for i = 1, . . . ,n} be a polyhedron. For a subset
S ✓Q define I(S) = {i 2 [n] : aip = bi for all p 2 S}.

(a) Show that aff(Q) = {x 2Rd : ai x = bi for all i 2 I(Q)}.

(b) Let L = aff(Q). Show that a point p is in the relative interior of Q if and
only if B(p,e) \ L ✓Q \ L for some e > 0 (cf. Exercise 3.18).

(c) Show that Q� = {x 2Q : ai x < bi for all i 62 I(Q)}.

3.20. Let P = conv{p1, . . . ,pm} be a polytope. Show that a point q is in the
relative interior of P if there are l1, . . . ,lm > 0 such that

q = l1p1 + · · ·+ lmpm and l1 + · · ·+ lm = 1.

For which polytopes is this condition an "if and only if"?

3.21. Let Q = {x 2 Rd : A x  b} be a polyhedron. Show that lineal(Q) =
ker(A). Infer that p + lineal(Q) ✓Q for all p 2Q.

The definition of lineality spaces makes sense for arbitrary convex sets
K in Rd. Show that in this more general situation, convexity implies that
p + lineal(K) ✓ K for all p 2 K.

3.22. Prove that a polyhedron Q ✓Rd is a cone if and only if Q = {x 2Rd :
A x  0} for some irredundant matrix A.

3.23. Show that
n

(x,y,z) 2R3 : z � x2 + y2
o

is a cone but not polyhedral.

3.24. Show that a polyhedral cone C is pointed if and only if p,�p 2 C
implies p = 0.
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3.25. Let P be the convex hull of {p1,p2, . . . ,pm}. Prove that

P =

(

l1p1 + l2p2 + · · · + lmpm :
m

Â
i=1

li = 1, l1,l2, . . . ,lm � 0

)

.

3.26. Prove that the vertices of a polyhedron Q are precisely the 0-dimensional
faces of Q.

3.27. Show that the i-faces of P are in bijection with the (i + 1)-faces of
hom(P) for all i = 0,1, . . . ,d.

3.28. Prove (3.5), namely, hom(P) = cone{(v,1) : v 2 vert(P)} . (Hint: you
will need Theorem 3.1.)

3.29. Let C ⇢ Rd+1 be a pointed polyhedral cone and let R ⇢ C \ {0} be a
generating set. Show that, if H ⇢Rd+1 is a hyperplane such that for every
r 2 R, there is a lr � 0 with lrr 2 H, then C \ H is a polytope.

3.30. Let

vert(Q1) = {u1,u2, . . . ,um} and vert(Q2) = {v1,v2, . . . ,vn}

and consider a point s + t 2Q1 +Q2; then there are coefficients l1, . . . ,lm �
0 and µ1,µ2, . . . ,µn � 0 such that Âi li = Âj µj = 1 and

s + t =
m

Â
i=1

liui +
n

Â
j=1

µjvj

Now set aij = li · µj � 0 for (i, j) 2 [m]⇥ [n]. Prove that

s + t = Â
(i,j)2[m]⇥[n]

aij(ui + vj) .

3.31. Show that if K1,K2 ⇢ Rd are convex then so is the Minkowski sum
K1 +K2.

3.32. Prove that a face of a (bounded) polyhedron is again a (bounded)
polyhedron.

3.33. Prove that every face of a polyhedron P is the intersection of some of
the facets of P .

3.34. Prove Corollary /refcor:affprojintpolytopes.
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3.35. Prove Proposition 3.4: the function c(H, ·) from PC(H) to Z is a
valuation.

3.36. Prove Corollary 3.10.





Chapter 4

Generating Functions

Everything should be made as simple as possible, but not simpler.
Albert Einstein

We now return to a theme started in Chapter 1: counting functions that
are polynomials. Before we can ask about possible interpretations of these
counting functions at negative integers—the theme of this book—, we need
structural results such as Proposition 1.1, which says that the chromatic
polynomial is indeed a polynomial. We hope that we conveyed the message
in Chapter 1 that such a structural result can be quite nontrivial for a given
counting function. Another example is given by the zeta polynomials of
Section 2.3: their definition ZP(n) := z

n
P(0̂, 1̂) certainly does not hint at the

fact that ZP(n) is indeed a polynomial. One of our goals in this chapter is
to develop machinery that allows us to detect and study polynomials. We
will do so alongside introducing several families of counting functions and,
naturally, we will discover a number of combinatorial reciprocity theorems
along the way.

4.1 Matrix Powers

As a warm-up example, we generalize in some sort the zeta polynomials
from Section 2.3. A matrix A 2 Cd⇥d is unipotent if A = I + B where I is
the d ⇥ d identity matrix and there exists a positive integer k such that
Bk = 0 (that is, B is nilpotent). The zeta functions from Chapter 2 are our
motivating examples of unipotent matrices. Let’s recall that, thinking of
the zeta function of a poset P as a matrix, the entry zP(0̂, 1̂) was crucial
in Chapter 2—the analogous entry in powers of zP gave rise to the zeta
polynomial (emphasis on polynomial!)

67
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ZP(n) = z

n
P(0̂, 1̂) .

Our first result says that one obtains a polynomial the same way from any
unipotent matrix.

Proposition 4.1. Let A 2 Cd⇥d be a unipotent matrix, fix indices 1 i, j d, and
consider the sequence f (n) := (An)ij formed by the (i, j)-entries of the nth powers
of A. Then f (n) agrees with a polynomial in n.

Proof. We essentially repeat the argument behind (2.1) that gave rise to
Proposition 2.4. Suppose A = I + B where Bk = 0. Then

f (n) = ((I + B)n)ij =
n

Â
m=0

✓

n
m

◆

(Bm)ij =
k�1

Â
m=0

✓

n
m

◆

(Bm)ij ,

which is a polynomial in n. ut

We now introduce the main tool of this chapter, the generating function of
the sequence f (n): the formal power series

F(z) := Â
n�0

f (n) zn.

Let’s use the arithmetic in our proof of Proposition 4.1 to compute this
generating function:

F(z) = Â
n�0

f (n) zn = Â
n�0

k�1

Â
m=0

✓

n
m

◆

(Bm)ij zn =
k�1

Â
m=0

(Bm)ij Â
n�0

✓

n
m

◆

zn

=
k�1

Â
m=0

(Bm)ij
1

m!
zm Â

n�m
n(n� 1) · · · (n�m + 1) zn�m

=
k�1

Â
m=0

(Bm)ij
1

m!
zm
✓

d
dz

◆m 1
1� z

=
k�1

Â
m=0

(Bm)ij
zm

(1� z)m+1

=
Âk�1

m=0(B
m)ij zm(1� z)k�m�1

(1� z)k ,

a rational function of the form h(z)
(1�z)k for some polynomial h(z) of degree

less than k. In particular, Corollary 4.6 below will give the converse to what
we just saw: f (n) is a polynomial of degree k if and only if F(z) is a rational
function with denominator (1� z)k+1. We’ll have more to say about this
soon.
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4.2 Restricted Partitions

It turns out that the class of counting functions that are polynomials can be
slightly widened to include quasipolynomials, and as we will see shortly, this
extension is natural from the viewpoint of rational generating functions. We
start with an example.

An (integer) partition of the integer n is a sequence (a1 � a2 � · · · � ak � 1)
of nonincreasing positive integers such that

n = a1 + a2 + · · ·+ ak . (4.1)

The numbers a1, a2, . . . , ak are the parts of this partition. For example, (4,2,1)
and (3,2,1,1) are partitions of 7.

Partitions have been around since at least Euler’s time. They provide a fertile
ground for famous theorems (see, e.g., the work of Hardy, Ramanujan, and
Rademacher) and open problems (e.g., nobody understands how the parity
of the number of partitions of n behaves), and they provide a just-as-fertile
ground for connections to other areas in mathematics and physics (e.g.,
Young tableaux, which open the window to representation theory).

Our goal is to enumerate partitions with certain restrictions, which will
allow us to prove a combinatorial reciprocity theorem. (The enumeration of
unrestricted partitions is the subject of Exercise 4.23, but it will not yield a
reciprocity theorem.)

In our first example, we restrict the parts of a partition to a finite set
A := {a1, a2, . . . , ad} ⇢Z>0, that is, we only allow partitions of the form

(a1, . . . , a1, a2, . . . , a2, . . . , ad, . . . , ad) .

(It is interesting—and related to topics to appear soon—to allow A to be a
multiset; see Exercise 4.20.) The restricted partition function for A is

pA(n) := #
n

(m1,m2, . . . ,md) 2Zd
�0 : m1a1 + m2a2 + · · ·+ mdad = n

o

.

It turns out that the problem of determining pA(n) becomes easier when we
look at all evaluations at once, and so we encode the sequence (pA(n))n�0
as the coefficients of the generating function

PA(z) := Â
n�0

pA(n) zn

One advantage of this (and any other) generating function is that it allows
us, in a sense, to manipulate the sequence (pA(n))n�0 by the use of algebra:
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PA(z) = Â
m1,m2,...,md�0

zm1a1+m2a2+···+mdad

=

 

Â
m1�0

zm1a1

! 

Â
m2�0

zm2a2

!

· · ·
 

Â
md�0

zmdad

!

=
1

(1� za1) (1� za2) · · · (1� zad)
,

(4.2)

where the last identity comes from the geometric series. To see how the
generating function of a counting function helps us understand the latter,
let’s look at the simplest case when A contains only one integer a. In this
case

P{a}(z) =
1

1� za = 1 + za + z2a + · · ·

is the generating function for

p{a}(n) =

(

1 if a|n,
0 otherwise

(as expected from the definition of p{a}(n)). The counting function p{a}(n)
is our first example of a quasipolynomial, that is, a function q : Z! C of
the form

q(n) = cn(n)nd + · · · + c1(n)n + c0(n) ,

where c0(n), c1(n), . . . , cn(n) : Z ! C are periodic functions in n. In our
example, p{a}(n) = c0(n) where c0(n) is the periodic function (with period
a) that returns 1 if n is a multiple of a and 0 otherwise.

Let’s look at another example, namely, when A has two elements. The
product structure of the accompanying generating function

P{a,b}(z) =
1

(1� za)
�

1� zb
�

means that we can compute

p{a,b}(n) =
n

Â
s=0

p{a}(s) p{b}(n� s) .

Note that we are summing a quasipolynomial here, and so p{a,b}(n) is
again a quasipolynomial by the next proposition, whose proof we leave as
Exercise 4.17.

Proposition 4.2. If q(n) is a quasipolynomial, so is r(n) := Ân
s=0 q(s). More gen-

erally, if f (n) and g(n) are quasipolynomials, so is their convolution
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c(n) :=
n

Â
s=0

f (s) g(n� s) .

We invite the reader to explicitly compute some examples of restricted parti-
tion functions, such as p{1,2}(n) (Exercise 4.19). Naturally, we can repeatedly
apply Proposition 4.2 to deduce:

Corollary 4.3. The restricted partition function pA(n) is a quasipolynomial in n.

Since pA(n) is a quasipolynomial, we are free to evaluate it at negative
integers. Let’s define

p�A(n) := #
n

(m1,m2, . . . ,md) 2Zd
>0 : m1a1 + m2a2 + · · ·+ mdad = n

o

,

the number of restricted partitions of n such that every ai is used at least
once.

Theorem 4.4 (Ehrhart). If A = {a1, a2, . . . , ad} ⇢Z>0 then

pA(�n) = (�1)n�1 pA(n� a1 � a2 � · · ·� ad) = (�1)n�1 p�A(n) .

Proof. We first observe that the number of partitions of n in which ai is used
at least once is exactly pA(n� ai). Thus, setting a := a1 + a2 + · · ·+ ad, we
see that

p�A(n) = pA(n� a) ,

and this gives the second equality. To prove the first, we use simple algebra
on (4.2) to obtain

PA

✓

1
z

◆

=
za1+a2+···+ad

(za1 � 1) (za2 � 1) · · · (zad � 1)
= (�1)dzaPA(z) ,

whence

Â
n�0

pA(n) zn = (�1)d z�a PA

✓

1
z

◆

= (�1)d z�a Â
n�0

pA(n) z�n

(⇤)
= (�1)d�1 z�a Â

n>0
pA(�n) zn

= (�1)d�1 Â
n�0

pA (�n� a) zn,

where (⇤) follows from Exercise 4.27. (A priori, the last sum should start
at n = 1� a, but comparing this sum with the generating function on the
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left-hand side shows that pA(n) = 0 for 1� a  n < 0.) Equating coefficients
proves the claim. ut

Clearly, constraining the parts to lie in a given set A is not the only restriction
on partitions that one can envision, and we will consider a different kind of
restriction in Section 4.4.

4.3 Quasipolynomials

We have just defined a quasipolynomial q(n) as a function Z! C of the
form

q(n) = cn(n) nn + · · ·+ c1(n) n + c0(n) , (4.3)

where c0, c1, . . . , cd : Z! C are periodic functions in n. The degree of q(n)
is d (assuming that cd is not the zero function) and the least common
period of c0(n), c1(n), . . . , cd(n) is the period of q(n). Alternatively, for a
quasipolynomial q(n), there exist a positive integer k and polynomials
p0(n), p1(n), . . . , pk�1(n) such that

q(n) =

8

>

>

>

>

>

<

>

>

>

>

>

:

q0(n) if n ⌘ 0 mod k,
q1(n) if n ⌘ 1 mod k,

...
qk�1(n) if n ⌘ k� 1 mod k.

The minimal such k is the period of q(n), and for this minimal k, the
polynomials q0(n),q1(n), . . . ,qk�1(n) are the constituents of q(n). Of course,
when k = 1, we only need one constituent and the coefficient functions
c0(n), c1(n), . . . , cd(n) are constants, and so q(n) is a polynomial. Yet another
perspective on quasipolynomials is explored in Exercise 4.25.

As we have seen in (4.2) in the previous section, the quasipolynomials of
degree d and period k arising from restricted partitions can be encoded
into generating functions that can be expressed as rational functions with a
particular denominator. A generating function that can be expressed as a
quotient of two polynomials is called a rational generating function and the
following proposition asserts that the denominators of rational generating
functions are the key to detecting quasipolynomials.

Proposition 4.5. Let q : Z! C be a function with associated generating function
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Q(z) := Â
n�0

q(n) zn.

Then q(n) is a quasipolynomial of degree  d and period dividing k if and only if

Q(z) =
h(z)

(1� zk)d+1

where h(z) is a polynomial of degree at most k(d + 1)� 1.

Apparently (4.2) is not of that form but multiplying numerator and de-
nominator by appropriate terms yields the denominator (1� zk)d where
k = lcm(a1, a2, . . . , ad). For example,

P{2,3}(t) =
1

(1� z2)(1� z3)
=

1 + z2 + z3 + z4 + z5 + z7

(1� z6)2 .

For the general recipe to convert (4.2) into a form fitting Proposition 4.5, we
refer to Exercise 4.26. In particular, the presentation of Q(z) in Proposition
4.5 is typically not reduced, and by getting rid of common factors it can be
seen that h(z)

g(z) gives rise to a quasipolynomial if and only if the zeros of g(z)
are roots of unity.

The benefit of having Proposition 4.5 is that it gives a pretty effective way
of showing that a function q : Z! C is a quasipolynomial. Let’s record the
important special case k = 1.

Corollary 4.6. A function q : Z! C is a polynomial of degree  d if and only if

Q(z) = Â
n�0

q(n) zn =
h(z)

(1� z)d+1

where h(z) is of degree  d.

The following two gadgets will prove useful in the proof of Proposition 4.5:
first, the Eulerian numbers

D

d
k

E

defined through

Â
n�0

nd zn =
1

(1� z)d+1

d

Â
k=0

⌧

d
k

�

zk, (4.4)

and second, the binomial series

1
(1� z)d+1 = Â

n�0

✓

d + n
d

◆

zn.
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Proof of Proposition 4.5. Suppose q(n) = Âd
j=0 cj(n)nj is a quasipolynomial of

degree  d and period dividing k. We will first consider the case k = 1, i.e.,
q(n) = Âd

j=0 cj nj is a polynomial. Then

Q(z) = Â
n�0

d

Â
j=0

cj njzn =
d

Â
j=0

cj
Âj

m=0

D

j
m

E

zm

(1� z)j+1

=
Âd

j=0 cj(1� z)n�j Âj
m=0

D

j
m

E

zm

(1� z)d+1 =
h(z)

(1� z)d+1 ,

and we observe that the degree of h(z) is at most d.

For general k, we can find polynomials q0(n),q1(n), . . . ,qk�1(n) of degree
 d such that

q(n) =

8

>

>

>

>

>

<

>

>

>

>

>

:

q0(n) if n ⌘ 0 mod k,
q1(n) if n ⌘ 1 mod k,

...
qk�1(n) if n ⌘ k� 1 mod k.

Thus

Q(z) = Â
a�0

k�1

Â
b=0

q(ak + b) zak+b =
k�1

Â
b=0

zb Â
a�0

qb(ak + b) zak,

and since qb(ak + b) is a polynomial in a of degree  d, we can use our
already-proven case to conclude that

Q(z) =
k�1

Â
b=0

zb hb(zk)

(1� zk)d+1

for some polynomials hb(z) of degree  d. Since Âk�1
b=0 zbhb(zk) is a poly-

nomial of degree  k(d + 1) � 1, this proves the forward implication of
Proposition 4.5.

For the converse implication, suppose Q(z) = h(z)
(1�zk)d+1 , where h(z) is a

polynomial of degree  k(d + 1)� 1, say

h(z) =
k(d+1)�1

Â
m=0

cm zm =
d

Â
a=0

k�1

Â
b=0

cak+b zak+b.

Then
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Q(z) = h(z) Â
j�0

✓

d + j
d

◆

zkj = Â
j�0

k�1

Â
b=0

d

Â
a=0

cak+b

✓

d + j
d

◆

zk(j+a)+b

= Â
j�0

k�1

Â
b=0

d

Â
a=0

cak+b

✓

d + j� a
d

◆

zkj+b = Â
j�0

k�1

Â
b=0

qb(kj + b) zkj+b,

where qb(kj + b) = Âd
a=0 cak+b(

d+j�a
d ), a polynomial in j of degree  d. In

other words, Q(z) is the generating function of the quasipolynomial with
constituents q0(n),q1(n), . . . ,qb�1(n). ut

Our proof shows that the (linear) transformation from q(n) to h(z) is in
essence a change of basis in the vector space of polynomials of degree  d:
writing the constituents of the quasipolynomial q(n) in terms of the standard
basis 1,n,n2, . . . ,nd, the coefficients of h(z) are precisely the coefficients of
these constituents when written in terms of the binomial-coefficient basis
(n

d), (
n+1

d ), . . . , (n+d
d ).

4.4 Plane Partitions

Our second partition example is the simplest case of a plane partition1;
namely, we will count all ways of writing n = a1 + a2 + a3 + a4 such that the
integers a1, a2, a3, a4 � 0 satisfy the inequalities

a1 � a2� �

a3 � a4 .
(4.5)

(For a general plane partition, this array of inequalities can form a rectangle
of any size.) Let pl(n) denote the number of plane partitions of n of the
form (4.5). We will compute its generating function

Pl(z) := Â
n�0

pl(n) zn = Â za1+a2+a3+a4 ,

where the last sum is over all integers a1, a2, a3, a4 satisfying (4.5). In the
spirit of Chapter 2, let

C :=
n

(a1, a2, a3, a4) 2Z4
�0 : a1, a2, a3, a4 satisfy (4.5)

o

1 Note that plane partitions are not partitions in the sense of Section 4.2 but a special case
of P-partitions which we will study in Section 6.3.



76 4 Generating Functions

be the collection of all plane partitions.2 Define

C23 := {(a1 � a2 � a3 � a4) 2Z4
�0}

C32 := {(a1 � a3 � a2 � a4) 2Z4
�0}

and observe that C23 [ C32 = C and

C23 \ C32 = {(a1 � a2 = a3 � a4)} =: C2=3.

We leave it as Exercise 4.28 to verify that the corresponding generating
functions are

Pl23(z) = Pl32(z) = P{1,2,3,4}(z) =
1

(1� z4)(1� z3)(1� z2)(1� z)
and

Pl2=3(z) = P{1,3,4}(z) =
1

(1� z4)(1� z3)(1� z)
,

and therefore

Pl(z) = Pl23(z) + Pl32(z) � Pl2=3(z) =
1

(1� z)(1� z2)2(1� z3)
.

Multiplying both the denominator and the numerator by h(z) = z16 + z15 +
3z14 + 4z13 + 7z12 + 9z11 + 10z10 + 13z9 + 12z8 + 13z7 + 10z6 + 9z5 + 7z4 +
4z3 + 3z2 + z + 1 takes the generating function into the range of Proposi-
tion 4.5 (can you see why?) and identifies pl(n) as a quasipolynomial. We
challenge the reader in Exercise 4.29 to compute this quasipolynomial ex-
plicitly.

Just as in our proof of Theorem 4.4, we can observe a simple algebraic
relation for Pl(z), namely,

Pl
✓

1
z

◆

= z8 Pl(z) .

And just as before, this gives rise to a reciprocity relation for the plane-
partition counting function:

pl(�n) = �pl(n� 8) .

There are many generalizations of pl(n); one is given in Exercise 4.30.

2 You might think about the (geometric) reason why we name this set C.
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4.5 Ehrhart–Macdonald Reciprocity for Simplices

A lattice simplex is a simplex whose vertices are in Zd. All simplices we will
consider in this section will be full dimensional. We first extend the lattice-
point counting definition of Section 1.4 to higher dimensions: if D⇢Rd, let

ehrD(n) := #
⇣

nD\Zd
⌘

= #
✓

D\ 1
n

Zd
◆

denote the number of integer lattice points in the nth dilate of D, where
n is a positive integer. Our next goal is to prove the following reciprocity
theorem, of which Theorem 1.15 was the two-dimensional case.

Theorem 4.7 (Ehrhart). Suppose D is a lattice d-simplex.

(a) For positive integers n, the counting function ehrD(n) is a polynomial in n
whose constant term is 1.

(b) When this polynomial is evaluated at negative integers, we obtain

ehrD(�n) = (�1)d ehrD�(n) .

We note that there are three statements hidden here:

• There is a polynomial p(x) 2 C[x] such that for positive integers n, p(n) =
ehrD(n).

• The evaluation of this polynomial at 0 is p(0) = 1.

• When p is evaluated at negative integers �n, we obtain p(�n) =
(�1)d ehrD�(n).

The counting function ehrD(n) assumes a special form if the lattice simplex

D = conv{v0,v1, . . . ,vd}

is unimodular, that is, the vectors v1� v0,v2� v0, . . . ,vd� v0 form a Z-basis
for Zd (equivalently, det (v1 � v0,v2 � v0, . . . ,vd � v0) = ±1). The following
result, which can be proved without assuming Theorem 4.7, is subject to
Exercise 4.33:

Proposition 4.8. Let D be the convex hull of the origin and the d unit vectors
in Rd. Then ehrD(n) = (n+d

d ), and this polynomial satisfies Theorem 4.7. More
generally, ehrD(n) = (n+d

d ) for any unimodular simplex D.

Proof of Theorem 4.7. Suppose D ✓ Rd is a lattice d-simplex. We use a tech-
nique from Chapter 3: namely, we consider the homogenization of P ,
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hom(D) = Â
v vertex of D

R�0(v,1)

by lifting the vertices of D into Rd+1 onto the hyperplane xd+1 = 1 and
taking the nonnegative span of this lifted version of D; see Figure 4.1 for an
illustration.

t
-

6

t t
-

6

t(2,1)(�1,1)

Fig. 4.1 The homogenization of the one-dimensional simplex [�1,2] and its fundamental
parallelepiped.

The reason for coning over D is that we can see a copy of the dilate nD as
the intersection of hom(D) with the hyperplane xd+1 = n; we will say that
points on this hyperplane are at height n. In other words, the Ehrhart series

EhrD(z) := 1 + Â
n>0

ehrD(n) zn (4.6)

can be computed through

EhrD(z) = Â
n�0

# (lattice points in hom(D) at height n) zn. (4.7)

We use a tiling argument to compute this generating function. Namely, let

Q := Â
v vertex of D

[0,1)(v,1) ,

the fundamental parallelepiped of hom(D). Then we can tile hom(D) by
translates of Q, as we invite the reader to prove in Exercise 4.32:

hom(D) =
[

m2Zd+1
�0

 

Â
v vertex of D

mv(v,1) + Q
!

, (4.8)

where the entries of m 2 Zd+1
�0 are indexed by the vertices of D, and this

union is disjoint.

The vertices of this tiling are all nonnegative integral combinations of the
vectors (v,1). These vectors are all at height 1, and so their contribution to
(4.7) is
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Â
n�0

# (nonnegative integral combinations of (v,1)’s at height n) zn =

✓

1
1� z

◆d+1
.

Each other lattice point in hom(D) is a translate of such a nonnegative
integral combination of the (v,1)’s by a lattice point in Q. Translated into
generating-function language, this gives

EhrD(z) = Â
n�0

# (lattice points in hom(D) at height n) zn

=

✓

1
1� z

◆d+1

Â
n�0

# (lattice points in Q at height n) zn.

So it remains to study

h(z) := Â
n�0

# (lattice points in Q at height n) zn.

Since Q has no points at height � d + 1, h(z) is a polynomial of degree
at most d. Furthermore, Q contains the origin, so h(0) = 1 and h(1) =
#
⇣

Q \Zd
⌘

� 1. This means we can apply Proposition 4.5 to

EhrD(z) =
h(z)

(1� z)d+1

to conclude that ehrD(n) is a polynomial. Furthermore,

ehrD(0) = EhrD(0) = h(0) = 1,

which finishes part (a).

Towards part (b), we compute

EhrD

✓

1
z

◆

= Â
n�0

ehrD(n) z�n =
h
⇣

1
z

⌘

⇣

1� 1
z

⌘d+1 = (�1)d+1
zd+1h

⇣

1
z

⌘

(1� z)d+1

and so by Exercise 4.27,

Â
n<0

ehrD(n) z�n = Â
n>0

ehrD(�n) zn = (�1)d
zd+1h

⇣

1
z

⌘

(1� z)d+1 .

Inspired by this, we define

EhrD�(z) := Â
n>0

ehrD�(n) zn, (4.9)
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and so proving the reciprocity theorem ehrD(�n) = (�1)d ehrD�(n) is equiv-
alent to proving

EhrD�(z) =
zd+1h

⇣

1
z

⌘

(1� z)d+1 . (4.10)

We can compute EhrD�(z) along the same lines as we computed EhrD(z) in
part (a):

EhrD�(z) = Â
n�0

# (lattice points in hom(D�) at height n) zn.

The fundamental parallelepiped of hom(D�) = Âv vertex of D R>0(v,1) is

eQ := Â
v vertex of D

(0,1](v,1) ,

and

EhrD�(z) =
eh(z)

(1� z)d+1 ,

where
eh(z) := Â

n�0
#
⇣

lattice points in eQ at height n
⌘

zn.

t
-

6

t (v2,1)(v1,1)

-

6

-

6

Q

�Q
�Q+ (v1,1) + (v2,1)

Fig. 4.2 An instance of (4.11).

Fortunately, the parallelepipeds Q and eQ are geometrically closely related,
as the reader should work out in Exercise 4.34:

eQ = �Q+ Â
v vertex of D

(v,1) . (4.11)

(Figure 4.2 shows one instance of this relation.) This translates into the
generating-function relation
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eh(z) = h
⇣

1
z

⌘

zd+1

which proves (4.10) and thus part (b). ut

This proof can, in fact, be generalized for a rational simplex, that is, a
simplex that is the convex hull of points in Qd. We invite the reader to prove
the following generalization of Theorem 4.7 in Exercise 4.35:

Proposition 4.9 (Ehrhart). If D is a rational d-simplex, then for positive integers
n, the counting function ehrD(n) is a quasipolynomial in n whose period divides
the least common multiple of the denominators of the vertex coordinates of D. When
this quasipolynomial is evaluated at negative integers, we obtain

ehrD(�n) = (�1)d ehrD�(n) .

Corollary 4.10. As in (4.6) and (4.9), let

EhrD(z) = Â
n�0

ehrD(n) zn and EhrD�(z) = Â
n>0

ehrD�(n) zn

denote the generating functions of the Ehrhart quasipolynomials of the d-dimensional
rational simplex D. Then EhrD(z) and EhrD�(z) are rational functions satisfying

EhrD

✓

1
z

◆

= (�1)d+1 EhrD�(z) .

Ehrhart–Macdonald Reciprocity holds for general rational polytopes, not
just simplices. However, we will need some more machinery before we can
prove the general case in Theorem 5.5. Part (a) of Theorem 4.7, on the other
hand, can be generalized at this point to general rational polytopes, once we
introduce triangulations.

Recall that a (convex) polytope P = conv{v1,v2, . . . ,vk} is the convex hull of
finitely many points v1,v2, . . . ,vk 2Rd. If we may choose v1,v2, . . . ,vk from
Zd, we call P a lattice polytope. A triangulation of a convex d-polytope P
is a finite collection n of d-simplices with the following properties:

• P =
[

D2T
D .

• For any D1,D2 2 T, D1 \ D2 is a face of both D1 and D2.

We will see in Chapter 5 that every convex polytope P can be triangulated
with simplices whose vertices are those of P . Assuming this result for the
moment, part (a) of Theorem 4.7 yields a famous result:
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Theorem 4.11 (Ehrhart). If P is a lattice polytope, then for positive integers n,
the counting function ehrP (n) is a polynomial in n whose constant term is 1.

Proof. Triangulate P and denote the open faces of the simplices of this
triangulation by D�1,D�2, . . . ,D�m; note that these are all lattice simplices (of
varying dimension) with vertices coming from the vertices of P . Since P is
the disjoint union of D�1,D�2, . . . ,D�m,

ehrP (n) =
m

Â
j=1

ehrD�j (n) .

By Theorem 4.7, all the functions on the right-hand side are polynomials,
and so ehrP (n) is also a polynomial.

To compute its constant term ehrP (0), we think of P = D�1 [ D�2 [ · · · [ D�m
as a polyconvex set. By Theorem 4.7,

ehrP (0) =
m

Â
j=1

ehrD�j (0) =
m

Â
j=1

(�1)dimDj ehrDj(0) =
m

Â
j=1

(�1)dimDj .

But the summands on the right-hand side are the Euler characteristics of
D�1,D�2, . . . ,D�m, by Corollary 3.8. Thus the left-hand side ehrP (0) is the Euler
characteristic of P , which is 1. ut

Naturally, we can repeat the argument in the above proof for rational
polytopes, that is, polytopes whose vertices are in Qd, and so Proposition
4.9 yields:

Corollary 4.12 (Ehrhart). If P is a rational polytope, then for positive integers n,
the counting function ehrP (n) is a quasipolynomial in n.

Theorem 4.11 and Corollary 4.12 were proved in 1962 by Eugène Ehrhart, in
whose honor we call ehrP (n) the Ehrhart (quasi-)polynomial of P .

We can also compute Ehrhart quasipolynomials of rational polytopal com-
plexes C: If ehrC(n) denotes the number of lattice points in the n-dilate
of the union of polytopes in C, then ehrC(n) is a quasipolynomial whose
constant term is ehrC(0) = c(C), by repeating the argument given in the last
paragraph of our above proof of Theorem 4.11.
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4.6 Solid Angles

Suppose P ✓Rd is a polyhedron. The solid angle wP (x) of a point x (with
respect to P) is a real number equal to the proportion of a small ball centered
at x that is contained in P . That is, we let B

e

(x) denote the ball of radius e

centered at x and define

wP (x) :=
vol (B

e

(x) \ P)
vol B

e

(x)

for all sufficiently small e. We note that when x /2P , wP (x) = 0; when x2P�,
wP (x) = 1; and when x 2 ∂P , 0 < wP (x) < 1. Computing solid angles is
somewhat nontrivial, as the reader can see, e.g., in Exercise 4.40.

Now let P be a polytope. We define

AP (n) := Â
m2nP\Zd

wnP (m) ,

the sum of the solid angles at all integer points in nP ; recalling that wP (x) =
0 if x /2 P , we may also write

AP (n) = Â
m2Zd

wnP (m) .

The following theorem can be proved along the exact same lines as our
proof of Theorem 4.7. We invite the reader to do so in Exercise 4.41.

Theorem 4.13 (Macdonald). Suppose P is a lattice d-simplex. Then AP (n) is a
polynomial in n of degree d whose constant term is 0. Furthermore, AP (n) is either
even or odd:

AP (�n) = (�1)d AP (n) .

Because solid angles behave additively when we glue two polytopes to-
gether (and because we do not have to take into account lower-dimensional
intersections), this result effortlessly3 extends to general lattice polytopes,
i.e., convex hulls of finitely many points in Zd:

Corollary 4.14 (Macdonald). Suppose P is a lattice d-polytope. Then AP (n) is
a polynomial in n of degree d whose constant term is 0. Furthermore, AP (n) is
either even or odd:

AP (�n) = (�1)d AP (n) .

3 As in Section 4.5, here we need the fact that every polytope can be triangulated into
simplices, which is the statement of Corollary 5.2.
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Note that the analogous step from Theorem 4.13 to Corollary 4.14 is not
as easy for Ehrhart polynomials: polynomiality does extend (as we have
shown in Section 4.5), but for reciprocity, we need to introduce additional
machinery (which we will do in the next chapter). Assuming the general
case of Ehrhart–Macdonald Reciprocity (Theorem 5.5) for the moment, we
can derive the following classical result, a higher-dimensional analogue of
the fact that the angles in a triangle add up to 180�, as the reader should
show in Exercise 4.42.

Theorem 4.15 (Brianchon, Gram). Suppose P is a rational d-polytope. Then

Â
F
(�1)dimF

wP (F ) = 0,

where the sum is taken over all faces F of P , and wP (F ) := wP (x) for any x in
the relative interior of F .

4.7 Notes

We have barely started to touch on the useful and wonderful world of
generating functions. We heartily recommend [46] and [82] if you’d like to
explore more.

Partition functions form a major and long-running theme in number theory;
again we barely scratched the surface in this chapter. We recommend [1]
and [2] for further study.

Theorem 4.4 is due to Eugène Ehrhart [26]. We will see in the next chapter
that it can be vastly generalized to a reciprocity theorem for counting
functions that involve not just one but an arbitrary (finite) number of linear
constraints.

The formula for the restricted partition function in the case that A contains
two elements (given in Exercise 4.21) first appeared, as far as we know, in
an 1811 book on elementary number theory by Peter Barlow [7, p. 323–325].
The version we state in Exercise 4.21 seems to go back to a paper by Tiberiu
Popoviciu [54], but it has been resurrected at least twice [61, 77].

Restricted partition functions are closely related to a famous problem in
combinatorial number theory: namely, what is the largest integer root of
pA(n) (the Frobenius number associated with the set A)?4 This problem,

4 For this question to make sense, we need to assume that the elements of A are relatively
prime.
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first raised by Georg Frobenius in the 19th century, is often called the coin-
exchange problem—it can be phrased in lay terms as looking for the largest
amount of money that we cannot change given coin denominations in the
set A. Exercise 4.21 suggests that the Frobenius problem is easy for |A| = 2
(and you may use this exercise to find a formula for the Frobenius number
in this case), but this is deceiving: the Frobenius problem is much harder for
|A| = 3 (though there exist formulas of sorts [22]) and certainly wide open
for |A| � 4. The Frobenius problem is also interesting from a computational
perspective: while the Frobenius number is known to be polynomial-nime
computable for fixed |A| [43], implementable algorithms are harder to come
by with (see [13] for the current state of the art). For much more on the
Frobenius problem, we refer to [55].

The Eulerian numbers defined in (4.4) go back to (surprise!) Leonard Euler
and are more commonly defined through the descent set of a permutation.
(We will derive this alternative description in Corollary 6.6.) For a bit of
history how Euler got interested in these numbers, see [38].

Plane partitions were introduced by Percy MacMahon about a century ago,
who proved a famous generating-function formula for the general case of an
m⇥ n plane partition [48]. The formula for 2⇥ 2 plane partition diamonds
given in Exercise 4.30 is due to George Andrews, Peter Paule, and Axel
Riese [3].

Eugène Ehrhart laid the foundation for lattice-point enumeration in ratio-
nal polyhedra, starting with the proof of Theorem 4.11 (and its rational
analogue Corollary 4.12) in 1962 [25] as a teacher at a lycée in Strasbourg,
France. (Ehrhart received his doctorate later, at age 60 on the urging of
some colleagues.) The proof we give here follows Ehrhart’s original lines
of thought; an alternative proof from first combinatorial principles can be
found in [59].

Richard Stanley developed much of the theory of Ehrhart (quasi-)poly-
nomials, initially from a commutative-algebra point of view. One of his
famous theorems says that the numerator polynomial of an Ehrhart series
has nonnegative integral coefficients [69]. The resulting inequalities serve
as the starting point when trying to classify Ehrhart polynomials, though
a complete classification is known only in dimension two [9]. The current
state of the arts regarding inequalities among Ehrhart coefficients is [74, 75].

I. G. Macdonald inaugurated the systematic study of solid-angle sums in
rational polyhedra in 1971 with Corollary 4.14. His paper [47] also contained
the first proof of Ehrhart–Macdonald Reciprocity for general rational poly-
topes (which we give in the next chapter). Some recent results and open
questions on solid angles can be found in [11, 23].
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The Brianchon–Gram relation (Theorem 4.15) is the solid-angle analogue
of the Euler relation (Theorem ??). It holds for general convex polytopes,
even though Theorem 4.15 assumes rational vertices. The 2-dimensional
case is ancient (most certainly known to Euclid); the 3-dimensional case
was discovered by Charles Julien Brianchon in 1837 [18] and—as far as we
know—independently reproved by Jørgen Gram in 1874 [30]. It is not clear
who first proved the general d-dimensional case of the Brianchon–Gram
relation; the oldest proofs we could find were from the 1960s [33, 51, 63].

For (much) more about Ehrhart (quasi-)polynomials and solid-angle enu-
meration, see [10], [36], and [72, Chapter 4].

Exercises

4.16. Prove the following extension of Proposition 4.1: Let A 2 Cd⇥d, fix
indices 1 i, j  d, and consider the sequence a(n) := (An)ij formed by the
(i, j)-entries of the nth powers of A. Then a(n) agrees with a polynomial in n
if and only if A is unipotent. (Hint: Consider the Jordan normal form of A.)

4.17. Prove Proposition 4.2: If q(n) is a quasipolynomial, so is r(n) :=
Ân

s=0 q(s). More generally, if f (n) and g(n) are quasipolynomials then so is
their convolution

c(n) :=
n

Â
s=0

f (s) g(t� s) .

4.18. Continuing Exercise 4.17, let c(n) be the convolution of the quasipoly-
nomials f (n) and g(n). What can you say about the degree and the period
of c(n), given the degrees and periods of f (n) and g(n)?

4.19. Compute the quasipolynomial pA(n) for the case A = {1,2}.

4.20. How does your computation of both the generating function and the
quasipolynomial pA(n) change when we switch from Exercise 4.19 to the
case of the multiset A = {1,2,2}?

4.21. Suppose a and b are relatively prime positive integers. Define the
integers a and b through

bb ⌘ 1 mod a and aa ⌘ 1 mod b ,

and denote by {x} the fractional part of x, defined through
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x = bxc � {x} ,

where bxc is the largest integer  x. Prove that

p{a,b}(n) =
t

ab
�
⇢

bt
a

�

�
⇢

at
b

�

+ 1.

4.22. The (unrestricted) partition function p(n) counts the number of parti-
tions of n. Show that its generating function is

1 + Â
n>0

p(n) zn = ’
k�1

1
1� zk .

4.23. Let d(n) denote the number of partitions of n into distinct parts (i.e., no
part is used more than once), and let o(n) denote the number of partitions of
n into odd parts (i.e., each part is an odd integer). Compute the generating
functions of d(n) and o(n), and prove that they are equal (and thus d(n) =
o(n) for all positive integers n).

4.24. Compute the constituents and the rational generating function of the
quasipolynomial q(n) = t + (�1)n.

4.25. Recall that z 2 C is a root of unity if z

m = 1 for some m 2Z>0.

(a) Prove that if c : Z! C is a periodic function with period k, then there
are roots of unity z0,z1, . . . ,zk�1 2 C and coefficients c0, c1, . . . , ck�1 2 C

such that
c(n) = c0z

n
0 + c1z

n
1 + · · · + ck�1z

n
k�1 .

(b) Use this to show that q : Z�0! C is a quasipolynomial if only if

q(n) =
m

Â
i=1

ciz
t
i n

ki

where ci 2 C, ki 2Z�0, and zi are roots of unity.

4.26. For A = {a1, a2, . . . , ad} ⇢ Z>0 let k = lcm(a1, a2, . . . , ad) be the least
common multiple of the elements of A. Provide an explicit polynomial
hA(z) such that generating function PA(z) for the restricted partitions with
respect to A is

PA(z) = Â
n�0

pA(n)zn =
hA(z)

(1� zk)d .
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4.27. Suppose q(n) is a quasipolynomial. Let

Q+(z) := Â
n�0

q(n) zn and Q�(z) := Â
t<0

q(n) zn.

Prove that Q+(z) and Q�(z) can be written as rational functions that add
up to zero: Q+(z) + Q�(z) = 0.

Here is one way to proceed:

(a) Repeat the proof of Proposition 4.5 to show that Q�(z) also evaluates to
a rational function.

(b) Let q(n) = 1. Prove that as rational functions, Q+(z) + Q�(z) = 0.

(c) Suppose q(n) is a polynomial. Prove that as rational functions, Q+(z) +
Q�(z) = 0.

(d) Suppose q(n) is a quasipolynomial. Prove that as rational functions,
Q+(z) + Q�(z) = 0.

4.28. In this exercise we consider the problem of counting partitions of n
with an arbitrary but finite number of parts, restricting the maximal size of
each part. That is, define

pm(n) := #{(m� a1 � a2 � · · ·� ak � 1) : k 2 Z>0 and a1 + · · ·+ ak = n} .

Prove that
pm(n) = p{1,2,...,m}(n) .

4.29. Compute the quasipolynomial pl(n) explicitly.

4.30. Show that the generating function for plane partition diamonds

a1 � a2
p_ p_
a3 � a4 � a5

p_ p_
a6 � a7

. . .
a3n�2 � a3n�1
p_ p_
a3n � a3n+1

is
(1 + z2)(1 + z5)(1 + z8) · · · (1 + z3n�1)

(1� z)(1� z2) · · · (1� z3n+1)
.



Exercises 89

Derive the reciprocity theorem for the associated plane-partition-diamond
counting function.

4.31. Pick four concrete points in Z3 and compute the Ehrhart polynomial
of their convex hull.

4.32. Prove (4.8):

hom(D) =
[

m2Zd+1
�0

 

Â
v vertex of D

mv(v,1) + Q
!

,

and this union is disjoint.

4.33. Prove Proposition 4.8 (without assuming Theorem 4.7): Let D be the
convex hull of the origin and the d unit vectors in Rd. Then ehrD(n) = (t+d

d ),
and this polynomial satisfies Theorem 4.7. More generally, ehrD(n) = (t+d

d )
for any unimodular simplex D.

4.34. Prove (4.11): eQ = �Q+ Â
v vertex of D

(v,1) .

4.35. Prove Proposition 4.9: If D is a rational d-simplex, then for positive
integers n, the counting function ehrD(n) is a quasipolynomial in n whose
period divides the least common multiple of the denominators of the ver-
tex coordinates of D. When this quasipolynomial is evaluated at negative
integers, we obtain

ehrD(�n) = (�1)d ehrD�(n) .

4.36. Define the integer-point transform of a set S ✓Rd as5

sS(z1,z2, . . . ,zd) := Â
(m1,m2,...,md)2S\Zd

zm1
1 zm2

2 · · · zmd
d .

A cone is simplicial if its generators are linearly independent.6 Extend
the methods of this section to prove that if C is a simplicial cone then
sC(z1,z2, . . . ,zd) is a rational function which satisfies

sC
⇣

1
z1

, 1
z2

, . . . , 1
zd

⌘

= (�1)dimC
sC�(z1,z2, . . . ,zd) .

5 This function also goes by the names of multivariate generating function of S and—
especially in number theory—full generating function of S.
6 If D is a simplex then hom(D) is an example of a simplicial cone.
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4.37. Let D be a lattice d-simplex and write

EhrD(z) =
hd zd + hd�1zd�1 + · · ·+ h0

(1� z)d+1 .

Prove that

(a) hd = #
⇣

D� \Zd
⌘

;

(b) h1 = #
⇣

D\Zd
⌘

� d� 1;

(c) h0 + h1 + · · ·+ hd = d!vol(D) .

4.38. Show that if P is a d-dimensional lattice polytope in Rd, then the
degree of its Ehrhart polynomial ehrP (n) is d and the leading coefficient is
the volume of P . What can you say if P is not full dimensional?

4.39. Find and prove an interpretation of the second leading coeffient of
ehrP (n) for a lattice polytope P . (Hint: start by computing the Ehrhart
polynomial of the boundary of P .)

4.40. Compute the solid angles of all points in the tetrahedron with vertices
(0,0,0), (1,0,0), (0,1,0), and (0,0,1). (You may use Theorem 4.15.)

4.41. Prove Theorem 4.13: Suppose P is a lattice d-simplex. Then AP (n) is a
polynomial in n of degree d whose constant term is 0. Furthermore, AP (n)
is either even or odd:

AP (�n) = (�1)d AP (n) .

4.42. Prove Theorem 4.15: Suppose P is a rational d-polytope. Then

Â
F
(�1)dimF

wP (F ) = 0,

where the sum is taken over all faces F of P , and wP (F ) := wP (x) for any
x in the relative interior of F .

4.43. State and prove a generating-function analogue of Corollary 4.14 along
the lines of Corollary 4.10.
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