Combinatorial Reciprocity Theorems

Homework \# 5 - due February 16
Rules: The maximum number of regular points on this homework is 20. Everything else are bonus points. Thus to safely pass this homework you have to complete (at least) one of the three exercises.

Exercise 1. The cube $C_{n}=[0,1]^{n}$ is the order polytope of the n-antichain. The maximal cells of its canonical triangulation Δ are

$$
F_{\sigma}=\left\{\phi \in \mathbb{R}^{n}: 0 \leq \phi_{\sigma(1)} \leq \phi_{\sigma(2)} \leq \cdots \leq \phi_{\sigma(n-1)} \leq \phi_{\sigma(n)} \leq 1\right\}
$$

for all permutations $\sigma \in \mathfrak{S}_{n}$. In this exercise you will show that this triangulation is regular. That is, that there are heights $\omega(v)$ for $v \in\{0,1\}^{n}$ such that Δ is the complex of bounded faces of

$$
\operatorname{conv}\left\{(v, \omega(v)): v \in\{0,1\}^{n}\right\}+\left\{\lambda e_{n+1}: \lambda \geq 0\right\} .
$$

i) Determine the vertices of F_{σ}.
ii) For a vertex $v \in\{0,1\}^{n}$ of the cube, define $\omega(v)=|v|(n-|v|)$ where $|v|=\sum_{i} v_{i}$. For σ find the unique hyperplane $H_{\sigma}=\left\{c^{T} x+c_{n+1} x_{n+1}=\delta\right\}$ such that

$$
c^{T} v+c_{n+1} \omega(v) \geq \delta
$$

for all $v \in\{0,1\}^{n}$ and with equality if and only if $v \in F_{\sigma}$.
[Hint: Consider first the case $\sigma=123 \ldots d$ and then use the symmetries of the cube.]
iii) For a general poset P on n-elements argue that $\mathcal{O}(P)$ is the union over all F_{σ} such that σ is a linear extension of P and, thus, that Δ is a regular subdivision of $\mathcal{O}(P)$.

(3+8+4 points)

Exercise 2. i) Let $Q \subset \mathbb{R}^{k}$ be a unimodular simplex of dimension k. Show that there is no lattice point in the relative interior of $n \cdot Q$ unless $n \geq k+1$.
[Hint: It is sufficient to verify this for your favorite unimodular k-simplex.] Bonus: What happens if Q is not necessarily unimodular?
(continued on backside)
ii) Verify that a cell $F(\mathcal{I})$ is contained in the interior of $\mathcal{O}(P)$ iff $I_{j} \backslash I_{j-1}$ is an anti-chain for all $j=1, \ldots, k+1$.
iii) Show that the following are equivalent

- P has a strict chain of length ℓ.
- $\Omega(P,-k)=0$ for $k \leq \ell$.
- Δ has no interior cells of dimension $\leq \ell$.
(4+3+8 points)
Exercise 3. Let $G=(V, E)$ be a finite directed graph and define $A \in\{0,-1,1\}^{V \times E}$ by

$$
A_{v e}= \begin{cases}1, & \text { if } e=u v \\ -1, & \text { if } e=v u, \text { and } \\ 0, & \text { otherwise }\end{cases}
$$

i) For $I \subseteq E$ denote by G_{I} the sub-graph spanned by the collection of edges and by A_{I} the sub-matrix with columns indexed by I. Show that A_{I} has full column rank $|I|$ if and only if G_{I} has no cycle.
[Hint: For a cycle, construct and element in the kernel of A_{I}.]
ii) If G_{I} is cycle free and b is an integral vector, show that if $A_{I} f=b$ has a solution, then f is integral.
[Hint: If v is a vertex of G_{I} with only one incident edge $e \in I$, then f_{e} is $\pm b_{v}$.]
iii) For $b \in \mathbb{Z}^{V}$ show that

$$
P_{G}(b)=\left\{f \in[0,1]^{E}: A f=b\right\}
$$

is either empty or a lattice polytope. If $p \in P_{G}(b)$ is a vertex, consider $I=\{i$: $\left.0<p_{i}<1\right\}$.

