Combinatorial Reciprocity Theorems

Homework \# 3 - due Dec 5

Exercise 1. i) Let $\sum_{n \geq 0} f(n) t^{n}=\frac{p(t)}{q(t)}$ be a rational generating function with $q(t)=1+\alpha_{1} t+$ $\cdots+\alpha_{d} t^{d}$ and $\operatorname{deg} p \geq \operatorname{deg} q$. Show that there is a finite exceptional set $E \subset \mathbb{N}$ and a function $g: \mathbb{N} \rightarrow \mathbb{C}$ such that $g(n)=0$ for $n \in \mathbb{N} \backslash E$ such that

$$
f(n+d)+\sum_{i=1}^{d} \alpha_{i} f(n+d-i)=g(n+d)+\sum_{i=1}^{d} \alpha_{i} g(n+d-i)
$$

for all $n \in \mathbb{N}$.
ii) Bonus: Consider \mathbb{N}^{n} as a poset with the componentwise partial order and let $I \subset$ \mathbb{N}^{n} be a filter, i.e. if $a \succeq b \in I$ then $a \in I$. Show that there are $a^{1}, a^{2}, \ldots, a^{M} \in$ \mathbb{N}^{n} such that

$$
I=\left\{a \in \mathbb{N}^{n}: a \succeq a^{i} \text { for some } i=1, \ldots, M\right\}
$$

[Hint: Consider projections $\left(b_{1}, \ldots, b_{n}\right) \mapsto\left(b_{1}, \ldots, b_{n-1}\right)$.]
iii) Let $I \subseteq \mathbb{N}^{n}$ be a filter and let

$$
f(k)=\#\left\{b \in I: b_{1}+b_{2}+\cdots+b_{n}=k\right\}
$$

Show that $f(k)$ is a polynomial for $k \gg 0$ sufficiently large.
[Hint: This is easy if $M=1$ and $I=\left\{a \succeq a^{1}\right\}$. In case of more generators the existence of joins and inclusion-exclusion might help.]
Bonus: Can you say what the exceptional set is?

Exercise 2. For $k \geq 1$ fixed, let $f_{k}(n)=n^{k}$.
i) Show that there are numbers $\alpha_{1}, \ldots, \alpha_{k+1}$ such that

$$
f_{k}(n+k+1)+\alpha_{1} f_{k}(n+k)+\cdots+\alpha_{k+1} f_{k}(n)=0
$$

ii) This implies that the generating function is rational

$$
\sum_{n \geq 0} f_{k}(n)=\frac{p_{k}(t)}{q_{k}(t)}
$$

What is $q_{k}(t)$?
iii) Bonus: What is $p_{k}(t)$?
[Hint: Ask Google.]
iv) What is the rational generating function for

$$
g_{k}(n)=\sum_{i=0}^{n} f_{k}(i) ?
$$

($1+1+3+2$ points)
Exercise 3. Let $A \in \mathbb{C}^{d \times d}$ be a diagonalizable matrix with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$. For fixed $i, j \in[d]$ show that there are $b_{1}, b_{2}, \ldots, b_{p} \in \mathbb{C}$ such that

$$
\left(A^{n}\right)_{i j}=b_{1} \lambda_{1}^{n}+b_{2} \lambda_{2}^{n}+\cdots+b_{p} \lambda_{p}^{n} .
$$

[Hint: $A_{i j}=e_{i}^{T} A e_{j}$ where e_{1}, \ldots, e_{d} is the standard basis.]

Exercise 4. Bonus: Let $f: \mathbb{N} \rightarrow \mathbb{C}$ and, for $N \in \mathbb{N}$, let $H_{N}(f)$ be the Hankel determinant $H_{N}(f)=\operatorname{det}(f(i+j-2))_{i, j \in[N]}$. E.g. for $N=4$ this is

$$
H_{4}(f)=\operatorname{det}\left(\begin{array}{llll}
f(0) & f(1) & f(2) & f(3) \\
f(1) & f(2) & f(3) & f(4) \\
f(2) & f(3) & f(4) & f(5) \\
f(3) & f(4) & f(5) & f(6)
\end{array}\right)
$$

Show that $\sum_{n \geq 0} f(n) t^{n}$ is a rational generating function if and only if there is an N_{0} such that $H_{N}(f)=0$ for all $N \geq N_{0}$.
[Hint: Show sufficiency (\Rightarrow) first.]

