Combinatorial Reciprocity Theorems

Homework \# 2 - due Thursday, Nov 17

Exercise 1. i) Let P, Q be two posets. Show that every interval of $P \times Q$ is of the form $\left[a, a^{\prime}\right]_{P} \times\left[b, b^{\prime}\right]_{Q}$.
ii) Let P, Q be locally finite. Show that we have

$$
\mu_{P \times Q}(I \times J)=\mu_{P}(I) \cdot \mu_{Q}(J)
$$

for all intervals $I \times J$ of $P \times Q$.
iii) Show that the Möbius function of the Boolean lattice $\mathcal{B}_{k}=\left(2^{[k]}, \subseteq\right)$ satisfies

$$
\mu_{\mathcal{B}_{k}}(S, T)=(-1)^{|T \backslash S|}
$$

for $S \subseteq T \in \mathcal{B}_{k}$. [Hint: \mathcal{B}_{k} is a product.]
iv) For $n \in \mathbb{N}$ fixed consider the map $f_{\leq}: \mathcal{B}_{k} \rightarrow \mathbb{N}$ with

$$
f_{\leq}(T)=|T|^{n}
$$

Show that

$$
k!S(n, k)=\left(f_{\leq} \mu_{\mathcal{B}_{k}}\right)([k])
$$

where $S(n, k)$ is the Stirling number of the second kind.
[Hint: $k!S(n, k)$ counts the number of surjective maps $[n] \rightarrow[k]$.]

Exercise 2. Let P be a locally finite poset with zeta function $\zeta=\zeta_{P}$. For $F \in I(P)$ denote by $F^{k}=F * F * \cdots * F$ the k-fold product of F in $I(P)$.
i) Show that for $x \preceq y$

$$
\zeta^{k}(x, y)=\#\left\{x=x_{0} \preceq x_{1} \preceq x_{2} \preceq \cdots \preceq x_{k-1} \preceq x_{k}=y\right\}
$$

counts the number of chains of length k in the interval $[x, y]$.
ii) Show that for $x \preceq y$

$$
(\zeta-\delta)^{k}(x, y)=\#\left\{x=x_{0} \prec x_{1} \prec x_{2} \prec \cdots \prec x_{k-1} \prec x_{k}=y\right\}
$$

counts the number of strict chains of length k in the interval $[x, y]$.
iii) Bonus: For $x, y \in P$, do you know what $(2 \delta-\zeta)^{-1}(x, y)$ counts?
(3+4 points)

Exercise 3. The octahedron or 3-dimensional crosspolytope is the convex polytope

$$
\diamond_{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}:\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right| \leq 1\right\}
$$

Compute the Ehrhart polynomial of \diamond_{3}.
Bonus: Can you find a combinatorial interpretation of $E\left(\diamond_{3}, n\right)$ for $n \in \mathbb{N}$?
(4+4 points)

Exercise 4. i) For distinct points $a, b \in \mathbb{Z}^{2}$ let $[a, b]=\{(1-\lambda) a+\lambda b: 0 \leq \lambda \leq 1\}$ be a lattice segment. Show that $E([a, b], t)=g t+1$ where $g=\operatorname{gcd}\left(\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|\right)$.
ii) Bonus: Can you show that there is an affine transformation $T(\mathbf{x})=A \mathbf{x}+c$ with $A \in \mathbb{R}^{2 \times 2}$ and $c \in \mathbb{R}^{2}$ such that $T\left(\mathbb{Z}^{2}\right)=\mathbb{Z}^{2}$ and $T([a, b])=\left[0,\binom{g}{0}\right]$?
iii) For two numbers $p, q \in \mathbb{Z}_{>0}$ use the above and the Ehrhart polynomial of the special triangle $T=\operatorname{conv}\left\{\binom{p}{0},\binom{0}{q}, 0\right\}$ to show

$$
\operatorname{gcd}(p, q)=2 \sum_{k=1}^{q-1}\left\lfloor\frac{k p}{q}\right\rfloor+p+q-p q
$$

