Combinatorial Reciprocity Theorems

Homework # 1 — due Monday, Oct 31

Exercise 1. Find the chromatic polynomials of

- i) the wheel with n spokes (and n+1 nodes).
- For example, the wheel with 6 spokes is \bigotimes .
- ii) the cycle on n nodes.
- iii) the path on n nodes.

(3+2+1 points)

Exercise 2. Find the chromatic polynomial of the complete bipartite graph $K_{3,3}$. $K_{n,n}$ has vertices $V = \{1, 2, ..., 2n\}$ and edges $E = \{ij : 1 \le i \le n < j \le 2n\}$. Bonus: What is it for $K_{n,n}$?

(4+3 points)

Exercise 3. Show that if G has l connected components, then k^l divides the polynomial $\chi_G(k)$. (2 points)

Exercise 4. Find two simple non-isomorphic graphs G and H with $\chi_G(k) = \chi_H(k)$. G and H are isomorphic if there is a bijection $\phi: V(G) \to V(H)$ such that

 $uv \in E(G) \iff \phi(u)\phi(v) \in E(H).$

Bonus: Can you find many (polynomial, exponential) such examples in the number of vertices?

(Bonus)²: Can you make your examples arbitrarily high connected?

(3+2+2 points)

(continued on backside)

Exercise 5. Let G = (V, E) be an oriented graph and $k \ge 2$.

i) Let $f: E \to \mathbb{Z}_k$ be a nowhere zero \mathbb{Z}_k -flow and let $e \in E$. Show that

$$f: E \setminus \{e\} \to \mathbb{Z}_k$$

is a nowhere zero \mathbb{Z}_k -flow on the contraction G/e.

ii) For $S \subseteq V$ let $E^{in}(S)$ be the *in-coming* edges, i.e., $u \to v$ with $v \in S$ and $u \in V \setminus S$ and $E^{out}(S)$ the *out-going* edges. Show that $f : E \to \mathbb{Z}_k$ is a nowhere zero \mathbb{Z}_k -flow if and only if

$$\sum_{e \in E^{\text{in}}(S)} f(e) = \sum_{e \in E^{\text{out}}(S)} f(e)$$

for all $S \subseteq V$. [Hint: For the sufficiency contract all edges in S and $V \setminus S$.]

iii) Infer that $\phi_G \equiv 0$ if G has a bridge.

(1+4+1 points)

Exercise 6. Prove that $\phi_G(k)$, the number of nowhere zero \mathbb{Z}_k -flows, is a polynomial in k. What is its degree? Show that $\phi_G(k) \leq \phi_G(k+1)$.

(3+2+1 points)