Combinatorial Reciprocity Theorems

Homework \# 1 - due Monday, Oct 31

Exercise 1. Find the chromatic polynomials of
i) the wheel with n spokes (and $n+1$ nodes).

For example, the wheel with 6 spokes is \forall.
ii) the cycle on n nodes.
iii) the path on n nodes.

Exercise 2. Find the chromatic polynomial of the complete bipartite graph $K_{3,3}$. $K_{n, n}$ has vertices $V=\{1,2, \ldots, 2 n\}$ and edges $E=\{i j: 1 \leq i \leq n<j \leq 2 n\}$. Bonus: What is it for $K_{n, n}$?
(4+3 points)

Exercise 3. Show that if G has l connected components, then k^{l} divides the polynomial $\chi_{G}(k)$.

Exercise 4. Find two simple non-isomorphic graphs G and H with $\chi_{G}(k)=\chi_{H}(k)$. G and H are isomorphic if there is a bijection $\phi: V(G) \rightarrow V(H)$ such that

$$
u v \in E(G) \quad \Longleftrightarrow \quad \phi(u) \phi(v) \in E(H) .
$$

Bonus: Can you find many (polynomial, exponential) such examples in the number of vertices?
(Bonus) ${ }^{2}$: Can you make your examples arbitrarily high connected?
(3+2+2 points)

Exercise 5. Let $G=(V, E)$ be an oriented graph and $k \geq 2$.
i) Let $f: E \rightarrow \mathbb{Z}_{k}$ be a nowhere zero \mathbb{Z}_{k}-flow and let $e \in E$. Show that

$$
f: E \backslash\{e\} \rightarrow \mathbb{Z}_{k}
$$

is a nowhere zero \mathbb{Z}_{k}-flow on the contraction G / e.
ii) For $S \subseteq V$ let $E^{\text {in }}(S)$ be the in-coming edges, i.e., $u \rightarrow v$ with $v \in S$ and $u \in V \backslash S$ and $E^{\text {out }}(S)$ the out-going edges. Show that $f: E \rightarrow \mathbb{Z}_{k}$ is a nowhere zero \mathbb{Z}_{k}-flow if and only if

$$
\sum_{e \in E^{\text {in }}(S)} f(e)=\sum_{e \in E^{\text {out }}(S)} f(e)
$$

for all $S \subseteq V$. [Hint: For the sufficiency contract all edges in S and $V \backslash S$.]
iii) Infer that $\phi_{G} \equiv 0$ if G has a bridge.
(1+4+1 points)

Exercise 6. Prove that $\phi_{G}(k)$, the number of nowhere zero \mathbb{Z}_{k}-flows, is a polynomial in k. What is its degree? Show that $\phi_{G}(k) \leq \phi_{G}(k+1)$.

