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Introduction

‘Begin at the beginning, and go on till
you come to the end: then stop.’
—Lewis Caroll, from “Alice’s Adven-
tures in Wonderland.”

Within the realms of combinatorial geometry, polytopes are one of the
most fascinating objects to study. One of the reasons for this might be, that
polytopes give the impression that one is dealing with “hands-on” geometry.
To start with, polytopes in three dimensions are best described as geometric
objects with finitely many vertices or, equivalently, as objects bounded by
finitely many polygons. Three dimensional polytopes have been around for
quite long and still they make people enthusiastic about geometry. Neverthe-
less, the fields of interesting 3-dimensional polytopes are fairly hunted down.
As a matter of fact, the classification of 3-polytopes was completed almost a
hundred years ago with the work of Ernst Steinitz. So a natural thing to do
is to move on in dimension. But in passing to dimension four, imagination
inevitably fails. For example, in four dimensional space there exist polytopes
with an arbitrary number of vertices with the property that every two ver-
tices are joined by an edge. In 3-space such polytopes are in short supply
(the tetrahedron is the only one). This and many examples more suggest
that transferring intuitive ideas from 3- to 4-space are insufficient to fathom
the unadulterated richness of geometry beyond our imagination.

But, as in any area of mathematical science, the heart beat can be mea-
sured by the richness and diversity of ideas. In discrete geometry, however,
ingenious constructions

“if rare in comparison with blackberries, are commoner than
returns of Halley’s comet.”

as G.H. Hardy quotes in his “A Mathematician’s Apology”. This work is
chiefly based on such an ingenious construction as was presented in Ziegler
(2004).

1



2 INTRODUCTION

The basic idea of the construction is the following. Instead of produc-
ing polytopes in

� 4 a little detour is taken. Ziegler constructs products of
polygons which are high-dimensional polytopes but are easy to analyze. In
particular, these products of polygons admit certain deformations that do
not alter the combinatorial structure. The key insight now is that even
though these deformations retain the combinatorics, projections of this poly-
topes to 4-space can look completely different. In that spirit, Ziegler designs
inequality systems corresponding to the afore mentioned polytopes whose
projections give rise to 4-polytopes having extremal combinatorial proper-
ties. In this work we make an attempt to give a systematic approach to the
technique of forming “deformed products” and we are able to give a combi-
natorial description of the deformed products of polygons.

The work is structured in the following way. In the first chapter we
introduce the main actors, namely convex polytopes. Since we will be dealing
with nothing else but convex polytopes, we will drop the supplement ‘convex’
henceforth. Polytopes come essentially in two different guises: They are
given either as the convex hull of a finite set of points or as an intersection
of finitely many halfspaces. A vital part of polytope theory is the liberty to
alternate between these two (different) ways of looking at polytopes. We will
heavily exercises the right to switch views when we introduce the notion faces
of polytopes, resulting in a multitude of ways to describe faces. Faces of a
polytope as well as the incidences among them constitute combinatorial data
that is commonly associated to a polytope. We introduce the face lattice,
a partially ordered set that captures this combinatorial data, as well as a
numerical invariant of it, the f -vector.

Next, we will introduce the important classes of simple and simplicial
polytopes. These polytopes possess the quality that their combinatorial
structure is stable under certain perturbations, a quality which lies at the
heart of the construction of deformed products of polytopes. This stability is
due to certain spatial relations of their facet normals or vertices, respectively,
and comes as the ubiquitous concept of “general position”. This work, as it
is, is just an ε away from being purely combinatorial. However, this ε gap
manifests itself in the fact that the feasibility of certain deformations relies
on metrical properties of the polytopes in question and thus on general posi-
tioning. We therefore dedicate some part of the first chapter to a treatment
of points being in general position.

Another important class we introduce is that of neighborly polytopes.
These are polytopes that exhibit, in a precise sense, extremal behaviour
concerning incidences of faces. One of its most valued members is the class of
cyclic polytopes, which possess a particularly nice combinatorial description.
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Apart from those families of polytopes, there exist several, all in all well
understood, techniques of producing new polytopes from old ones. One such
technique, to which we devote some time, is that of taking products. As it
turns out, taking products of polytopes is a purely combinatorial construc-
tion and we will thus elaborate on it in these terms. A well-known family
of polytopes along which we will illustrate the product construction is the
family of cubes.

Chapter 2 develops all the tools necessary for the construction and anal-
ysis of deformed products of polytopes. We start with the introduction of
Gale transforms, a tool indispensable in the study of polytopes with few ver-
tices. Gale transforms, which can be stated in terms of basic linear algebra,
are a mean of associating to a point configuration a vector configuration that
has, in some sense, identical combinatorial properties. In the right setting,
this vector configuration lives in a low dimensional space and might even be
visualized. This makes it possible to make statements about polytopes that
exist beyond human perception. In this work, however, we present a new
application of Gale transforms as perturbations of certain polytopes.

A seemingly unrelated topic that we take up in the second chapter is that
of subdivisions of polytopes. The basic idea behind subdivisions is that poly-
topes, or more general geometric objects, can be decomposed into simpler

building blocks and the object in question can be viewed as the sum of its
parts and thus be studied in that spirit. Subdivisions, or more specifically
triangulations, are of considerable practical interest. In computer graphics,
for instance, surfaces are modelled by sets of triangles that lie edge-to-edge
and give, if the triangulation is fine enough, the impression of a smooth ob-
ject. In the task of modelling solid bodies, the basic building blocks are
(combinatorial) cubes and, in computer graphics, these subdivisions go by
the name of hexahedral meshes. We put emphasis on regular subdivisions
and lexicographic subdivisions that arise as projections of polytopal liftings
of point configurations. We end the chapter with a way of relating regular
subdivisions to Gale transforms by, what we call, perturbed Gale transforms.

Finally, Chapter 3 combines the developed tools in the construction of
deformed products. In this last chapter we head for the construction of
polytopes with extremal combinatorics. These arise as projections of high
dimensional polytopes and therefore we digress on projections of polytopes.
We introduce the notion of faces being strictly preserved under projection
and give some characterizations of faces that do so.

We proceed by reviewing the notion of “deformed products” as given
in Amenta and Ziegler (1999) and introduce possible generalizations. In
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that light, we review the neighborly cubical polytopes of Joswig and Ziegler
(2000) as (generalized) deformed products and retrace their combinatorial
description. The construction we propose is more general and leads to many
non-isomorphic cubical polytopes in dimensions d ≥ 6.

Building on neighborly cubical polytopes we reconstruct Ziegler’s de-
formed products of polygons and give, for the first time, a complete com-
binatorial description of the projection.

Acknowledgements. I am grateful to Professor Ziegler for letting me work
on the problem and, even more, providing me with such a marvelous working
environment within his group. These last month have been a real pleasure
for me. I would also like to thank Andreas Paffenholz, Thilo Schröder, Jakob
Uszkoreit, Arnold Wassmer, and Axel Werner for their proof-reading and
for their endurance to listen to my (mathematical) waffling. In particular, I
am very much in debt to Thilo Schröder for many helpful and enlightening
discussions.

Last but not least, I like to express my gratitude and deep feelings to
Vanessa Kääb for not only being encouraging and supportive in respect to
this work, but also for enriching my life with her presence.



Chapter 1

Polytope Theory

Throughout this work the main objects under scrutiny are polytopes. Poly-
topes, in all guises, constitute a rich and, all in all, intuitive class of geometric
objects. Known prior to antiquity, they still furnish vast and active areas of
research. From the viewpoint of discrete geometry the important quality is
that polytopes admit an interesting study in purely combinatorial terms.

This chapter serves as a reference for basic definitions, results, and no-
tation. We will further assume that the reader has already encountered
polytopes and, maybe, some of their combinatorial properties. Readers feel-
ing the urge to acquire more knowledge about polytopes we advise to have
a look at the works of Grünbaum (2003) and Ziegler (1995). These are,
without doubt, the main sources for polytope theory giving a classical and
modern treatment, respectively. For a quick look-up we point the reader to
Henk et al. (2004).

One independent notational issue that will accompany us throughout this
work is [n] := {1, 2, . . . , n}, the set of all natural numbers up to n ∈ � .

1.1 Polytopes

This section presumes basic knowledge of affine geometry.

Definition 1.1 (Polytope). A non-empty set P ⊂
� d is called a polytope if

(V) there is a finite set of points V = {v1, v2, . . . , vn} ⊂
� d such that

P = conv(V ) := {λ1v1 + · · ·+ λnvn : λi ≥ 0, λ1 + · · ·+ λn = 1} ⊂
� d

or, equivalently,

5
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(H) there are row vectors a1, a2, . . . , am ∈
� d and scalars b1, b2, . . . , bm ∈

�

such that
P = {x ∈

� d : ai x ≤ bi for all i ∈ [m]}

and the right hand side is a bounded set.

A polytope given by the first part of the definition is called a V-polytope
or is said to be an interior representation, as it describes the polytope as
the convex hull of a finite point set. An element vi ∈ V is called a vertex of
P if P 6= conv(V \{vi}) and the set of vertices is denoted by vert(P ) ⊆ V .
Without loss of generality we will always assume that vert(P ) = V since we
can iteratively test the points and remove them from V if necessary. The
dimension of a polytope P is dim P := dim affP , the dimension of its affine
hull. If affP =

� d, we call P a full-dimensional polytope or, simply, a d-
polytope.

The latter characterization is called an H-polytope or exterior representa-
tion. The reason for that will become clear in a moment, when we introduce
the notion of a face. A more economical notation for an H-polytope is given
by

P = P (A, b) := {x ∈
� d : A x ≤ b}

where A ∈
� m×d is a matrix with rows a1, . . . , am and b = (b1, b2, . . . , bm)T ∈

� m is a column vector. For i ∈ [m] let A\i denote the submatrix of A with
the i-th row deleted and let b\i be defined likewise. An inequality ai x ≤ bi is
called facet defining if P 6= P (A\i, b\i). As before, we will assume that every
row of (A, b) is a facet defining inequality.

The more systematic approach to polytopes is to state the definitions of V-
and H-polytope separately and deduce the equivalence from the Main The-
orem of polytope theory. For brevity, we cut this route short but the reader
will find an excellent exposition in Ziegler (1995). However, the reader might
see from that remark that the requirement of P (A, b) being bounded is abso-
lutely necessary for the equivalence. Let us mention that in the unbounded
case P = P (A, b) is called an H-polyhedron. We will not encounter those in
this work.

For � 6= c ∈
� d and cd+1 ∈

�
we define

H(c, cd+1) := {x ∈
� d : cT x = cd+1}

to be the (affine) hyperplane determined by c and cd+1 and we denote by
H−(c, cd+1) := {x : cT x ≤ cd+1} and H+(c, cd+1) respectively the associated
(closed) halfspaces.
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Definition 1.2. Let P ⊂
� d be a polytope and H = H(c, cd+1) a hyperplane.

We call H a supporting hyperplane if P is fully contained in H+ or H− and
H∩P 6= Ø. In the affirmative case, we call the intersection F = P∩H(c, cd+1)
a face of P .

In addition to the above definition we agree that P is a face of itself and
we call Ø the empty face of P . These, somewhat artificial, faces are called
improper whereas all other faces are called proper. What is apparent from
the definition is that every face of P is again a polytope and we can therefore
speak of the dimension of a face. The faces of dimension 0, 1, d− 2 and d− 1
of a d-polytope are called vertices, edges, ridges and facets, respectively. By
convention, the empty face has dimension dimØ = −1. Furthermore, if F
is a face of P then V ′ := vert(F ) ⊆ vert(P ) and thus F = conv(V ′). From
that we see that a supporting hyperplane is equivalently characterized by the
property that all vertices lie in one halfspace and facets arise from supporting
hyperplanes that are spanned by inclusion-maximal subsets of the vertices.

Let P = convV ⊂
� d be a polytope and let x ∈

� d\P be an arbitrary
point outside P . A face F of P is visible from x if for every y ∈ F the
closed line segment conv{x, y} intersects P in y. Equivalently, this is the
case iff there is a defining hyperplane of F that separates x and P . Note
that if P is not full dimensional, then P is visible from x if x 6∈ affP .
For a vertex v ∈ V = vert(P ) we define visible(v ; P ) as the set of faces of
P ′ = conv(V \{v}) that are visible from v.

Another concept in connection with faces that seems less intuitive at first
is that of a coface.

Definition 1.3 (Coface). Let P = convV be a polytope with vertex set V .
The set V ′ ⊆ V is called a coface if conv(V \V ′) is a face of P .

According to Grünbaum (2003), the notion of a coface was coined by
Micha Perles in connection with Gale transforms (cf. Section 2.1). Let
H = H(c, cd+1) be a supporting hyperplane and F = H∩P the induced face.
Suppose further that P ⊂ H+, then all vertices v ∈ V satisfy cT v−cd+1 ≥ 0,
with equality iff v ∈ vert(F ). Thus, the coface corresponding to F is V ′ =
{v ∈ V : cT v − cd+1 > 0}. We will explore this thinking a little further in
the section on Gale transforms.

The combinatorial study of polytopes mostly abstracts from their metric
realizations and investigates the facial structure. To be more precise, the
set of all faces L(P ) of a polytope P is naturally endowed with a partial
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order, namely the inclusion relation. This turns (L(P ),⊆) into a partially
ordered set, called the face lattice of P , which is a purely combinatorial
object. Bearing that in mind, we will write “F ≤ P” to denote a face F
of P .

The face lattice of a polytope therefore determines its combinatorial type
and we call two polytopes P and P ′ combinatorially equivalent if they have
isomorphic face lattices.

The number of faces of each dimension is certainly a combinatorial in-
variant, i.e. combinatorially non-isomorphic polytopes will disagree in these
numbers. For a d-polytope P , this statistic is recorded by the f -vector
f(P ) = (f0, f1, . . . , fd−1, fd) where

fi := #{F ≤ P : dim F = i}

for 0 ≤ i ≤ d.

1.2 Simple, Simplicial and neighborly poly-

topes

The d-dimensional simplex ∆d ⊂
� d is the convex hull of any set of d + 1

affinely independent points v0, v1, . . . , vd ∈
� d. As the points are free from

affine relations, they are indeed the vertices of a polytope and since they
affinely span

� d this polytope is full dimensional. The faces of ∆d correspond
to all possible subsets of the vertices.

A d-polytope P is called a simplicial polytope if all of its proper faces
are simplices or, equivalently, if its facets are (d − 1)-simplices. Simplicial
polytopes have the property that their vertices can be slightly perturbed
without changing the combinatorial type of the convex hull. So it is possible
to bring the vertices of a simplicial polytope in general position, a quality of
a set of points that we will now define.

Definition 1.4 (General position). Let V ⊂
� d be a set of n ≥ d + 1

points. The points V are in general position if every (affine) hyperplane
contains at most d points.

An important property of “being in general position” is that this property
is stable under small perturbations. The next proposition substantiates this
statement and even gives an idea of what “small” is supposed to mean.

Proposition 1.5. Let v1, . . . , vn ∈
� d be a finite set of points in general

position. Then there is a δ = δ(v1, v2, . . . , vn) > 0 such that for each choice
η1, η2, . . . , ηn ∈ B̊δ = {x ∈

� d : ‖x‖ < δ} the points v1 +η1, v2 +η2, . . . , vn+ηn

are still in general position.
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Sketch of Proof. An equivalent definition of points being in general position
is that for each (d + 1)-subset {i0, . . . , id} ⊂ [n]

det

(

vi0 . . . vid

1 . . . 1

)

6= 0.

Define for every such subset 1 ≤ i0 < i1 < · · · < id ≤ n the function

Pi0,...,id(ηi0, . . . , ηid) := det

(

vi0 + ηi0 . . . vid + ηid

1 . . . 1

)

and with all of them

P (η1, . . . , ηn) :=
∏

1≤i0<i1<···<id≤n

Pi0,...,id(ηi0 , . . . , ηid).

P (η1, . . . , ηn) is a multivariate polynomial, hence continuous, in n·d variables
and it is zero iff the points v1 + η1, v2 + η2, . . . , vn + ηn are not in general
position. By continuity P−1({0}) is a closed set and we can thus determine
a suitable δ.

An operation that certainly sustains general position is that of removing
a point from a set of n ≥ d+2 points. For polytopes with vertices in general
position that means that every subpolytope, i.e. the convex hull of a span-
ning subset of the vertices, is again a simplicial polytope and thus, all visible
faces are thus a simplices.

Another class of polytopes which are, in a precise sense, dual to simplicial
polytopes is the class of simple polytopes. A d-polytope is called simple, if
every vertex is contained in exactly d facets. A property which we will of-
ten exploit in subsequent chapters is that simple polytopes are stable under
slight perturbations of their facet hyperplanes.

Yet another class of polytope that we will make use of is that of neigh-
borly polytopes. They form an important family of polytopes and one of
the foremost members are the cyclic polytopes, to which we will now devote
some space and time. But first things first.

Definition 1.6 (Neighborly polytopes). Let P be a d-polytope, then P
is a k-neighborly polytope, if every subset of k vertices defines a face of P .
P is called a neighborly polytope if it is b d

2
c-neighborly.

It is known (see for example Ziegler (1995), Exercise 0.10) that if a d-
polytope P is k-neighborly with k > b d

2
c then P is a d-simplex. On this
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note, k = bd
2
c is the highest degree of neighborliness and it is therefore jus-

tified to plainly call polytopes achieving this bound neighborly.

Consider the moment curve γd :
�
→

� d with γd(t) = (t, t2, . . . , td)T

and the polytope Cd(t1, t2, . . . , tn) := conv{γd(ti) : i ∈ [n]} ⊂
� d for val-

ues t1 < t2 < · · · < tn. It can be shown that Cd(t1, t2, . . . , tn) is a neigh-
borly, simplicial d-polytope with n vertices in general position. What is even
more amazing is that the combinatorial type is independent of the choices of
t1, . . . , tn (c.f. Ziegler (1995)). We therefore define Cd(n) := Cd(t1, t2, . . . , tn),
for arbitrary values t1 < · · · < tn, and call it the d-dimensional cyclic polytope
on n vertices. An additional feature that makes cyclic polytopes so amiable

is that its facial structure can be described in purely combinatorial terms.

Before we come to that, let us propose a combinatorial model in which
to phrase the combinatorics of Cd(n). For a simplicial polytope it suffices
to know the vertex sets of facets. Since every proper face is a simplex,
the combinatorial structure is then already determined. We will thus solely
record the d-subsets of vertices corresponding to facets. After choosing an
order on the set of vertices, we can encode the vertex-facet incidences as
vectors over {0, 1}n where n denotes the number of vertices. In detail: let
P be a simplicial d-polytope with vertices V = {v1, v2, . . . , vn} and F ≤ P a
face. Then we capture the incidences by α ∈ {0, 1}n with

αi =

{

0, if vi ∈ vert(F )
1, if vi 6∈ vert(F )

Viewing α as a characteristic vector over V in the usual sense, the reader will
find that α denotes a coface. In particular, if α denotes a facet of P , then α
has d zero entries. For convenience, we define supp α := {i ∈ [n] : αi 6= 0}.

Theorem 1.7 (Gale’s Evenness Condition, Gale (1963)). Let Cd(n)
be the cyclic d-polytope with vertices indexed by [n] = {1, 2, . . . , n} in the
order in which they occur on the moment curve. Further, let α ∈ {0, 1}n

with d zero entries. Then α denotes a facet of Cd(n) if, and only if, for all
i, j ∈ supp α with i < j

#{k ∈ [n] : i < k < j, αk = 0} is even.

The reader might consider the following example ridiculous but we will
take up this very example in subsequent chapters and we will promise it to
be more interesting by then.
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1 2 3 4 5
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0

PSfrag replacements

1

2

3

4

5

Anyway, the reader will have no problems with verifying that the pen-
tagon C2(5) obeys to Gale’s Evenness Condition.

1.3 Products

One operation that produces new polytopes from old ones is that of taking
products. The basic idea is that the pointwise, Cartesian product of two
polytopes living in d- and e-space respectively gives a polytope in (d + e)-
dimensional space. Noteworthy is that products are a purely combinatorial
construction, by which we mean that the facial structure of the product is
determined solely by the combinatorics of the factors. We will exploit this
fact when we come to deformed products later.

Definition 1.8 (Product). Let P ⊂
� d be a d-polytope and Q ⊂

� e an
e-polytope. Then the product of P and Q is the Cartesian product

P ×Q :=

{(

x

y

)

∈
� d+e : x ∈ P, y ∈ Q

}

.

From the above definition it is not at all clear that the product of two
polytopes is again a polytope. The next proposition will establish that. Prod-
ucts are among the most basic constructions in polytope theory. We therefore
feel at ease with just stating the main properties of products without proof.
Details can be found in the afore mentioned literature.

Proposition 1.9. Let P = conv{p1, p2, . . . , pn} = P (A, a) ⊂
� d and

Q = conv{q1, q2, . . . , qm} = P (B, b) ⊂
� e be two polytopes and P × Q their

product. Then

i) P ×Q = conv{
(

pi

qj

)

: i ∈ [n], j ∈ [m]}

ii) The points of P ×Q are given by the solutions of the system of (facet
defining) inequalities

(

A
B

)(

x
y

)

≤

(

a
b

)

where we omitted the zero entries.
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iii) The dimension of the product satisfies dim(P ×Q) = dimP + dim Q.

iv) The non-empty faces of P ×Q are the products of non-empty faces of
the factors. On the converse, every product F ×G of non-empty faces
F ≤ P and G ≤ Q is a face of P ×Q.

v) If P and Q are simple polytopes, then so is P ×Q.

2

The key property for a combinatorial description of P ×Q is point iv) of
the above proposition and, combined with iii) proves the following corollary.

Corollary 1.10. Let P and Q be polytopes and f(P ), f(Q) their respective
f -vectors. Then

fi(P ×Q) =
i

∑

`=0

f`(P )fi−`(Q)

with the convention that fi = 0 if i exceeds the dimension of the corresponding
polytope.

Now we illustrate products by a well-known family, the (combinatorial)
d-cubes.

Let I = [−1, 1] = {t ∈
�

: −1 ≤ t ≤ 1} be the unit interval. In terms
of polytopes, I is a 1-dimensional, simple polytope as depicted in the figure
below. PSfrag replacements

+1−1

We can identify the non-empty faces of I with the set {−, 0, +} in the
obvious way: we denote by − and + the left and right vertices of I and let
0 stand for the whole polytope as an improper face.

Definition 1.11 (Standard cube / combinatorial cube). Let d ≥ 1.
We define Cd := Id = I × I × · · · × I, the d-fold product of I, to be the
d-dimensional standard cube. Further, let P be a d-polytope, then we call P
a combinatorial d-cube if P is combinatorially equivalent to Cd.

Cubes constitute a nice class of polytopes which have a simple combina-
torial description given as follows.

Proposition 1.12. Let Cd be a d-cube. Then the set of non-empty faces
can be identified with the elements α ∈ {−, 0, +}d. Furthermore, α denotes
a k-face iff k = d−#supp(α) = #{i ∈ [d] : αi = 0}.
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Proof. By proposition 1.9 the faces of Id are products of faces of I. We
described I in terms of {−, 0, +}. α ∈ {−, 0, +}d specifies faces in all the
factors and thus a face of the product. The dimension of the face denoted
by α is 1 · k + 0 · (d− k) = k.

Figure 1.1 show a two and three dimensional cube together with a (par-
tial) labeling of their faces.

PSfrag replacements

−−

−+ ++

+−

00 +0−0

0+

0−

(a) A 2-dimensional cube with labeled
non-empty faces.

PSfrag replacements

−−−

−− + − + +

− + −

+ −−

+ − + + + +

+ + −

(b) A 3-cube with labeled vertices.

Figure 1.1: A two and three dimensional cube.

Concerning the f -vector, we have the following (trivial) result.

Corollary 1.13. Let C be a combinatorial d-cube. Then

fk(C) = 2d−k

(

d

k

)

for 0 ≤ k ≤ d. Equivalently, fk is the coefficient of tk in the expansion of
f(t) = (2 + t)d.

Although we will not make use of it, let us mention that if we equip the
set {−, 0, +} by the an order relation � given by

PSfrag replacements

0

+ −

and extend it componentwise to {−, 0, +}d then the partially ordered set
({−, 0, +}d,�) is isomorphic to the face lattice of Cd with the minimal ele-
ment removed.
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An explicit H-description of a standard cube is given by

Cd = {x ∈
� d : −1 ≤ xi ≤ 1 for i ∈ [n]}.

In subsequent chapters we will be concerned with changing the exterior de-
scription of the standard cube such that the combinatorial type does not
change. To avoid complicated constructions and an unnecessary formal ap-
paratus, we will exemplify the changes in the inequality system of the cube.
In order to make the changes traceable for the reader, here is the inequality
system of the standard cube.

Cd :



















±1 1
±1 1

. . .
...

±1 1
±1 1

±1 1



















. (1.1)

This is a quite economical description of the cube and thus we think a few
explanations are appropriate. The above system consists of 2d inequalities.
Each row in (1.1) represents two inequalities handling one coordinate at a
time. For example, the first row reads as ± x1 ≤ 1 and thus represents
−1 ≤ x1 ≤ 1. As usual, we will represent zero entries by blanks.



Chapter 2

Gale Transforms and
Subdivisions

‘and what is the use of a book,’ thought
Alice, ‘without pictures or conversa-
tions?’
—Lewis Caroll, from “Alice’s Adven-
tures in Wonderland.”

Gale transforms and subdivisions play a central rôle in our construction
that we will present in the next chapter. Here we will give an introduction
(or review, depending on the reader) of both concepts. Gale transforms
and especially subdivisions have received enough attention to fill voluminous
books (e.g. De Loera, Rambau, and Santos (2005)), so we have to refrain
from giving both subjects the treatment they deserve.

We begin by developing the theory of Gale transforms for polytopes,
which is far from being the most general setting, but it meets our needs. We
will review known and rather unknown facts about Gale transforms, thereby
focusing on what will turn out to be useful later. We then proceed by intro-
ducing(?) the reader to subdivisions, or more specifically to triangulations of
polytopes, again placing emphasis on qualities important for our construc-
tion. We conclude the chapter by elaborating on interconnections of Gale
transforms and subdivisions, i.e. we will show how to encode information
about regular subdivisions into Gale transforms and, vice versa, how per-
turbed Gale transforms give rise to subdivisions of their underlying polytope.

To simplify the exposition, the general assumption for this chapter is that
whenever we are dealing with a set of points V in some

� d, we assume, unless

15
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stated otherwise, that the points are in general and convex position and
thus conv(V ) is a simplicial polytope.

A small remark before we really plunge into the subject. After completing
this chapter we learned the bitter lesson that some of our main results pre-
sented here are far from being new. On the contrary, an exposition treating
similar ideas can be found in Lee (1991). Unnecessary to say that we should
have spend more time investigating the literature and so instead we intone,
once again, that this work is authentic and developed in total unawareness
of the aforesaid article.

2.1 Gale Transforms

In his seminal book “Convex Polytopes”, Branko Grünbaum (2003) writes

“The reader will find it well worth his while to become familiar
with the concepts of Gale-transforms and Gale-diagrams, since
for many of the results obtained through them no alternative
proofs have been found so far. It is very likely that the method
will yield many additional results.”

and, indeed, we will add to its applicability in the next chapter. In this
section we will take up Grünbaums suggestion and give a familiarizing expo-
sition.

Gale transforms (and diagrams) are named after David Gale (see Gale
(1956)) but they were fully developed by Micha Perles as is documented in
Grünbaum (2003). As sources for further study and/or reference we mention
Matoušek (2002) for an elementary treatment, Ziegler (1995) for an intro-
duction in connection with oriented matroids, and McMullen (1979) for an
algebraically flavored treatise.

The intriguing thing about Gale transforms is that they are almost trivial
to define but rather mind-boggling to use. To give the reader a foretaste, let
L ⊆

� n be a linear subspace of some
� n given as the span of a set of vectors.

Then basic linear algebra tells us that L is uniquely determined by L⊥ ⊂
� n,

the linear subspace orthogonal to L. Since L⊥ is linear, it has a basis that
is unique up to linear transformations and, by the same argumentation, is
uniquely determined by (L⊥)⊥, which happens to coincide with L. So far,
nothing really spectacular happened.
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But, in the study of point configurations, such as the vertices of a poly-
tope, seemingly natural combinatorial data derived from the configuration
are the spatial relations of the points to oriented affine hyperplanes, that is
for a given hyperplane one can record for every point whether it is on the
hyperplane or in which of the induced (open) halfspaces. For example, a face
of a polytope is given by its intersection with a supporting hyperplane, i.e.
a hyperplane having all vertices either on it or on one side. The notion of a
Gale transform grows out of the interplay of this combinatorial data and the
linear algebra sketched above. The combinatorial data can be captured as a
linear space associated to the point configuration and, by linear algebra, this
gives rise to an orthogonal or dual linear space which encodes the combina-
torial data of another (dual) point configuration. Still with us? We said it is
mind-boggling, didn’t we?

For the rest of this section, we agree on the following notation. We will
consider ordered subsets V = {v1, v2, . . . , vn} of some

� d. Mark, that we do
not require all the elements vi to be distinct and we will distinguish them
by their index (thereby making the set notation meaningful). Sometimes
it will be convenient to view these sets as matrices and we will use V =
(v1, v2, . . . , vn) ∈

� d×n and the set notation above interchangeably without
prior warning. For I ⊆ [n] = {1, 2, . . . , n} we denote by VI = {vi : i ∈ I} ⊆ V
the induced subset/matrix.

As customary in affine geometry, we pass from affine point configurations
to (linear) vector configurations by means of homogenization which will be
denoted by

V hog :=

(

v1 v2 · · · vn

1 1 · · · 1

)

∈
� (d+1)×n.

In the homogeneous domain two points p and q are considered equal iff
p = λ q for some λ 6= 0. So scaling a point such that its last coordinate is
equal to 1 is just a way of choosing representatives from an equivalence class.
For points with last coordinate equal to zero, this is not possible and they
are said to lie in the hyperplane at infinity. So linear combinations of ho-
mogenized points correspond to affine or convex combinations of the original
points, depending on whether the coefficients are arbitrary or non-negative
respectively. For further matters see Berger (1994) or any other (affine) ge-
ometry book at hand.

To tell sets of vectors from sets of (affine) points, we will denote the latter
with V hog, thus handling affine point configurations in d-space as vector con-
figurations in r = d+1 dimensional space. In order to sidestep special cases,
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we will assume that the set in question linearly spans the ambient space. For
V hog ⊂

� r this means that the points V affinely span
� d.

Let ϕ :
� d →

�
be a function given by ϕ : x 7→ cT x + cd+1, then we call

ϕ an affine function or a linear function if cd+1 = 0. On an ordered set V an
affine function ϕ gives rise to an affine value vector ϕ(V ) ∈

� n by recording
the value of ϕ(vi) for each point vi ∈ V . So the affine value vector for V and
ϕ is given by

ϕ(V ) = cT V + cd+1 � T = (cT , cd+1)V
hog.

Considering the last equality, it is evident that an affine function on V is
just a linear function on V hog and therefrom it follows that Val(V ) ⊆

� n as
well as Val(V hog) ⊂

� n, the set of linear and affine value vectors, are linear
subspaces and, even more, the set of rows of V and V hog are bases for the
corresponding spaces.

Another linear space that we will take into consideration is

Dep(V hog) := {α ∈
� n : V α = � , � T α = 0} = ker V hog

which happens to be the set of affine dependencies of V . This linear subspace
is orthogonal to Val(V hog) which the following proposition assures of.

Proposition 2.1. Let ϕ ∈ Val(V hog) and α ∈ Dep(V hog). Then

〈ϕ, α〉 =
∑

i∈[n]

ϕiαi = 0.

Proof. By construction every α ∈ Dep(V ) is orthogonal to the rows of the
matrix V and thus to every linear combination ϕ = cT V ∈ Val(V ).

Counting dimensions gives dim Val(V hog) = r, due to the fact that V hog

has full row rank, and dim Dep(V hog) = n− rankV hog = n− r = n− (d + 1).
Now we are set to define Gale transforms. Let V ∈

� d×n be a point
configuration, Dep(V hog) ⊂

� n the space of affine dependencies, and let
G ∈

� (n−d−1)×n be a matrix whose rows form a basis for Dep(V hog). Now
comes the major mental leap: we can read G as an ordered set of column
vectors and we define G = {g1, g2, . . . , gn} ⊂

� n−d−1 to be a Gale transform
of the affine point configuration V . The reader might have noticed that there
is a certain freedom of choice involved, namely the choice of the basis G for
Dep(V hog). But in what is about to come it will become apparent that any
basis will do the job and so we advise the reader to pick his favorite one.
However, the one thing we emphasize is that the ordered sets V and G stand
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in natural bijection to each other, by mapping vi 7→ gi for all i ∈ [n].

We are ultimately interested in Gale transforms of polytopes, or more
precisely, of the vertices of polytopes. Historically, this is the setting in
which Gale transforms came into being and, according to Grünbaum (2003),
in which Micha Perles coined the notion of a coface. Let V \VI be the set
of vertices of a face F ≤ P , then there is an affine function ϕ(x) such that
ϕ(v) ≥ 0 for all v ∈ V and equality is achieved only by the vertices of
F . Thus the corresponding affine value vector ϕ(V ) is non-negative and its
support {i ∈ [n] : ϕ(V )i = ϕ(vi) > 0} = I determines the coface.

Now comes the reason why Gale transforms are worth studying.

Theorem 2.2. Let P = convV ⊂
� d be a d-polytope with vertices

V = {v1, v2, . . . , vn} ⊂
� d, G = {g1, g2, . . . , gn} ⊂

� n−d−1 a Gale transform of
V and let I ⊆ [n]. Then VI is a coface of P if, and only if, 0 ∈ relint conv(GI),
i.e. the vectors GI have a strictly positive dependence.

Proof. Let ϕ ∈ Val(V hog) be an affine value vector induced by the face
conv(V \VI). By definition, ϕi > 0 ⇔ vi ∈ VI and we can assume that
∑

i ϕi = 1. By proposition 2.1, we have
∑

i∈[n] ϕigi =
∑

i∈I ϕigi = � .

For the converse, note that every positive dependence is a linear combi-
nation of V hog and therefore an affine value vector from which a coface can
be read off.

So questions concerning faces of a polytope P can be posed as questions
about positive dependences in the vector configuration G. In general, ana-
lyzing G instead of P is by no means easier, but the reason for the success
of Gale transforms is the reduction in dimension that sometimes happens in
the passage from P to G. A d-polytope having n ≥ d+1 vertices gives rise to
a Gale transform in (n− d− 1)-dimensional space which is manageable for n
small enough. See Ziegler (1995) for examples of high dimensional polytopes
constructed via their low dimensional Gale transforms.

We will benefit from Gale transforms in a totally different way and, in
particular, we will derive properties of a Gale transform from the knowledge
of the underlying polytope. For these situations we need a characterization
of vector configurations that qualify as Gale transforms.

Proposition 2.3. Let G = {g1, g2, . . . , gn} ⊂
� k be a set of vectors satisfying

G � =
∑

i gi = � . Then G is a Gale transform of an (n− k− 1)-dimensional
polytope if, and only if, for every linear hyperplane both induced open half-
spaces contain at least two of the vectors of G.
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Proof. Let V = (v1, v2, . . . , vn) ∈
� (n−k−1)×n be a basis of Dep(Ghog). Now

the points v1, v2, . . . , vn are the vertices of a polytope if, and only if, no
vi is affinely dependent on V \vi. This is the case if, and only if, every
affine dependence has at least two positive and two negative coefficients.
Since the affine dependences of V are affine value vectors coming from linear
hyperplanes on G, this completes the proof.

Another important issue is the question of how the dimension of a face
F = conv(V \VI) relates to the (linear) dimension of GI . For a polytope
whose vertices are in general position, the answer is rather simple.

Proposition 2.4. Let V = {v1, . . . , vn} ⊂
� d with n ≥ d + 1 be a set of

points and G = {g1, . . . , gn} ⊂
� n−d−1 its Gale transform. Then the points of

V are in general position if, and only if, no linear hyperplane contains more
than n− d− 2 vectors of G (the vectors of G are in general position).

Proof. Yet another, equivalent characterization of the points V being in gen-
eral position is that every inclusion-minimal affine dependence involves d+2
points. So let α = cT G ∈ Dep(V hog) be an affine dependence with mini-
mal support, i.e. α has at least d + 2 non-zero entries. By construction, α
is a linear combination of the rows of G and thus a (linear) value vector
α ∈ val(G) with at most n − (d + 2) zero entries. That means that the
hyperplane {x : cT x = 0} contains at most n− d− 2 vectors of G.

So in case of a polytope with vertices in general position we get the
following corollary.

Corollary 2.5. Let V ⊂
� d be the vertices of a polytope P in general position.

Then VI ⊆ V is a coface of P if and only if the vectors GI positively span
� n−d−1.

And for the general position case we can choose a basis for Dep(V hog)
having a particularly nice form.

Proposition 2.6. Let V = {v1, . . . , vn} ⊂
� d be a set of points in general

position with n ≥ d+1. Then V has a Gale transform G ∈
� (n−d−1)×n of the

form G = (In−d−1G
′) with G′ ∈

� (n−d−1)×(d+1).

Proof. Let k := n−d−1 and V ′ = {vk+1, vk+2, . . . , vn}. For each i = 1, . . . , k
the set {vi} ∪ V ′ is minimally affinely dependent and thus has an affine
dependence of the form (1, gi,k+1, gi,k+2, . . . , gi,n). Then the matrix

G =











1 g1,k+1 g1,k+2 . . . g1,n

1 g2,k+1 g2,k+2 . . . g2,n

. . .
...

1 gk,k+1 gk,k+2 . . . gk,n













2.2. SUBDIVISIONS 21

is the desired Gale transform.

We close with an example of a polytope, namely a C2(5), and its Gale
transform.

PSfrag replacements

{2, 3, 4}

{3, 4, 5} {1, 2, 3}

{1, 2, 5}{1, 4, 5}
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(a) A pentagon with its facets labeled by
the cofaces, that is the vertices not con-
tained in the facet.
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(b) Gale transform of the pentagon to the
left. The labels correspond to the vertices.

Figure 2.1: The figure shows a pentagon and its Gale transform. The ver-
tices of the pentagon are in general position, which is reflected in the Gale
transform.

2.2 Subdivisions

Subdivisions are a means of subdividing a geometrical object into “smaller”,
possibly more manageable objects/parts. They are used in diverse and often
seemingly unrelated areas of mathematics ranging, for instance, from alge-
braic topology (from where they originated) to the theory of binary trees (cf.
Rambau (2000)). Here we will study them because subdivisions of certain
polytopes (surprisingly) carry the combinatorics of the projected deformed
polytopes we will construct later.

The section is organized as follows: we start with the definition of polyhe-
dral complexes which naturally lead to subdivisions. We then introduce the
reader to regular subdivisions as well as to methods to obtain them and go
into the subtleties of realizing certain regular subdivisions, or lexicographic
subdivisions to be more precise, geometrically.

For further particulars we refer the reader to De Loera et al. (which is in
preparation at the time of writing) as well as to Rambau (2000) on which
this section is based. For a clear and brief introduction see also Lee (2004).
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Broadly speaking subdivisions are polytopal complexes associated to a
(finite) set of points in some

� d.

Definition 2.7 (Polytopal Complex). A non-empty set of polytopes S in
some

� d is a polytopal complex if it satisfies

i) if F ≤ P ∈ S then F ∈ S, and (Closure property)

ii) P, P ′ ∈ S then P ∩ P ′ ≤ P and P ∩ P ′ ≤ P ′. (Intersection property)

The dimension of S is dim(S) := max{dim(P ) : P ∈ S} and S is called pure if
all its inclusion-maximal polytopes have the same dimension. The underlying
set (or polyhedron) of S is the underlying point set ‖S‖ =

⋃

P∈S P and its
vertices are vert(S) =

⋃

P∈S vert(P ).

So a polytopal complex is a set of polytopes closed under taking faces and
whose polytopes lie face-to-face. The polytopes in S are called faces or cells.
We will stick to the latter term to avoid confusion with faces of polytopes. If
all cells in S are simplices then S is usually called a simplicial complex. The
polytopal complexes that we will consider in here are all finite, which means
that they contain only finitely many polytopes.

To illustrate the definition let P be a polytope. Then two associated pure
polytopal complexes are the complex of the polytope C(P ) = {F : F ≤ P}
and its boundary complex C(∂P ) = {F : F < P} = C(P )\{P}. If P is a
simplicial polytope then C(∂P ) is a simplicial complex. If P is a simplex
then C(P ) obviously simplicial.

Suppose we have a finite set of polytopes P = {P1, P2, . . . , Pk} satisfying
condition i) of the above definition. We can turn P into a polytopal complex
by adding the faces of each Pi. For that we define the closure of such a set
as cl(P) :=

⋃

P∈P C(P ).

Example 2.8. Let S be a polytopal complex and v ∈ vert(S) a vertex.

i) The closure of the set of faces of S that contain v is a polytopal complex
called the (closed) star of v and denoted by star(v;S) := cl{F ∈ S :
v ∈ F}.

ii) Dually, if we consider the set of faces of S not containing v then this
again gives us a polytopal complex from which we can recover star(v;S)
in S and vice versa. This complex is called the anti-star of v and is
given by astar(v;S) := {F ∈ S : v 6∈ F}. Note that no closure is
necessary: If a polytope does not contain v then every face of it does
neither.
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iii) Star and anti-star of a vertex cover the whole complex. Their intersec-
tion is the polytopal complex link(v;S) := star(v;S)∩ astar(v;S) called
the link of v.

These three operations produce new, albeit smaller, complexes from a
given one. They can, however, be stated more generally by, for example,
considering (anti-)stars of higher dimensional faces (cf. Grünbaum (2003)).

Definition 2.9 (Subdivision). Let V ⊂
� d be a set of points. A subdivision

of V is a (pure) polytopal complex S such that ‖S‖ = conv(V ). It is called a
subdivision without new vertices if vert(S) ⊆ V . If S is a simplicial complex
then S is called a triangulation of V .

An illustration of the definition is given in Figure 2.2.

(a) Trivial subdi-
vision

(b) Non-sim-
plicial Subdivi-
sion

(c) Triangula-
tion with new
vertex

PSfrag replacements

1

2

3

(d) Lexicogra-
phic Triangula-
tion

Figure 2.2: Different subdivisions of a hexagon.

One class of subdivisions that is, in a sense, particularly well behaved is
that of regular subdivisions. A regular subdivision can be thought of as a
subdivision of a point set induced by a projection of a higher dimensional
polytope. In order to give a satisfying definition of regular subdivisions we
have to introduce the notion of a lower face.

Definition 2.10 (Lower face). Let P ⊂
� d+1 be a (d + 1)-polytope and

F < P a face. Then F is a lower face if x − λed+1 6∈ P for all x ∈ F and
λ > 0.

Equivalently, a face F is a lower face if there is a defining hyperplane H(c, δ)
of F , i.e. F = H(c, δ)∩P , whose outer normal c = (c′, cd+1)

T ∈
� d+1 satisfies

cd+1 < 0. We denote by F `(P ) the set of all lower faces of P and call it the
lower envelope of P .
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Definition 2.11 (Regular subdivision). Let V ⊂
� d be a set of points and

S a subdivision of V . Then S is a regular subdivision if there is a polytope
PS ⊂

� d+1 satisfying

i) the projection of PS obtained by deleting the last coordinate yields
conv(V ), and

ii) the set of lower faces of PS yields S, under the projection
� d+1 →

� d

that deletes the last coordinate. In particular, F `(PS) ∼= S.

We will solely be interested in subdivisions without new vertices and so the
above definition can be rephrased in the following way: if S is a subdivision
of V = {v1, v2, . . . , vn} without new vertices then S is a regular subdivision
if there are heights w = (w1, . . . , wn) ∈

� n such that the lower envelope of

V w := conv

(

v1 v2 · · · vn

w1 w2 . . . wn

)

⊂
� d+1

is isomorphic to S. On the other hand, every height vector w ∈
� n defines

a regular subdivision of V without new vertices which we will denote by
T (V, w) := F `(V w).

There are two rather common operations to obtain regular subdivisions
which are called pulling and pushing a vertex.

Definition 2.12 (Pulling for polytopes). Let P be a d-polytope and
v ∈ vert(P ) a vertex. Then the result of pulling v is the subdivision pull(v; P )
of P given by

pull(v; P ) : = {v ∗ F : F is a face of P not containing v}

= {v ∗ F : F ∈ astar(v; C(P ))}.

Definition 2.13 (Pushing for polytopes). Let P = conv(V ) be a d-
polytope and v ∈ V a vertex. The subdivision obtained by pushing v is

push(v; P ) := {v ∗ F : F ∈ visible(v ; P )} ∪ C(conv(V \v)).

In case P is a pyramid with apex v we get push(v; P ) := C(P ).

Note that pull(v; P ) and push(v; P ) leave any simplex, or more generally a
pyramid (with apex v), unchanged. Figure 2.3 shows a pulling and a pushing
subdivision of a hexagon.

If S is a subdivision of V then we can push/pull a vertex v in S by

pull(v;S) := astar(v;S) ∪ {pull(v; F ) : F ∈ star(v;S)}, and

push(v;S) := astar(v;S) ∪ {push(v; F ) : F ∈ star(v;S)}.
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(a) Pulling vertex 0 gives a triangulation
of the hexagon.

(b) Pushing vertex 0 gives a subdivision
with one cell being a pentagon.

Figure 2.3: Illustration of the operations pull(v; P ) and push(v; P ) with P
being a hexagon.

Applying push/pull to a subdivision gives a new (possibly unchanged)
subdivision of the same set of points. So after choosing an ordering of the
points V = {v1, v2, . . . , vn} we can specify for each point whether we pull or
push it. This idea is condensed in the definition of a lexicographic subdivi-
sion.

Definition 2.14 (Lexicographic Subdivision). Let V = {v1, v2, . . . , vn}
be a full-dimensional set of points and s1, s2, . . . , sk ∈ {−, +} with k ≤ n.
Then the lexicographic subdivision

Lex(V ; s1, . . . , sk) := Lex(C(convV ); s1, . . . , sk)

of V is defined recursively by

Lex(S; si, si+1, . . . , sk) :=

{

Lex(push(vi;S); si+1, . . . , sk), if si = +
Lex(pull(vi;S); si+1, . . . , sk), if si = −

Lex(S; ) := S

Lexicographic subdivisions were studied by Sturmfels (1991) in connection
with Gröbner bases of toric varieties.

In general this definition is redundant in the sense that different pulling/
pushing sequences lead to the same subdivision. For the general position
case, this fact is specified by the next proposition.

Proposition 2.15. Let V = {v1, v2, . . . , vn} ⊂
� d be the vertices of a d-

polytope in general position and s1, s2, . . . , sk ∈ {−, +} with k ≤ n such that
there is at least one component with a negative sign and p := min{i ∈ [k] :
si = −}. Then Lex(V ; s1, s2, . . . , sk) ∼= Lex(V ; s1, s2, . . . , sp)
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Proof. Let S ′ = Lex(V ; s1, . . . , sp−1). All cells of S ′ but one are simplices and
the remaining cell is isomorphic to Q = conv{vp, vp+1, . . . , vn}. This is due
to the fact that the cells emerging by a push on a set of vertices in general
position are simplices (cf. Definition 2.13). Now the next step in the course
of constructing Lex(V ; s1, s2, . . . , sk) replaces Q by a pulling triangulation
with respect to vp. Thus Lex(V ; s1, s2, . . . , sp) is a triangulation of V and
refinements by means of pushing or pulling leave it invariant.

So we can define Lexp(V ) := Lex(V ; s1, s2, . . . , sp) p ≤ n with si = + for
i ∈ [p− 1] and sp = −. If p = n then the triangulation arises by pushing all
vertices in the order in which they occur.

Before we plunge into further matters concerning lexicographic subdivi-
sions, we intermit to have a detailed look at lexicographic subdivisions of
cyclic polytopes.

Let Cd(n) = conv{γd(1), γd(2), . . . , γd(n)} be the cyclic d-polytope on n
vertices. We identify the vertices with the set [n] = {1, 2, . . . , n} in its
natural ordering. By Theorem 1.7 the facial structure is given by cofaces
represented by vectors α ∈ {0, 1}n that satisfy the Gale’s Evenness Con-
dition. If we delete the vertex i we obtain, surprise, the cyclic polytope
Cd(n − 1). Let α ∈ {0, 1}n−1 be a coface of Cd(n − 1) and denote by
α[i← 1] = (α1, . . . , αi−1, 1, αi, . . . , αn−1) the extended vector with 1 inserted
at position i. Then α[i ← 1] might or might not satisfy Gale’s Condition.
In the case it does, then α[i← 1] is a coface of Cd(n) that does not contain
vertex i. Otherwise, α is a non-face as it is covered by i. This observation
enables us to state the following.

Proposition 2.16 (Pushing/Pulling for cyclic polytopes). Let n ≥
d + 2 and α ∈ {0, 1}n−1 be a coface of Cd(n− 1) and i ∈ [n]. Then α[i← 0]
is a cell of pull(i; Cd(n)) if, and only if, α[i ← 1] satisfies Gale’s Evenness
Condition. Otherwise, α[i← 1] is a cell of push(i; Cd(n)).

If we push/pull the vertices in the given, natural order, we get

Corollary 2.17. Let α be a cofacet of Cd(n − 1). Then α[i ← 0] is a cell
of pull(1; Cd(n)) if α starts with an even number of zeros. Otherwise, it
corresponds to a cell of push(1; Cd(n)).

Trivially, every facet α of Cd(n − 1) either starts with an even or odd
number of zeros. The following table displays all lexicographic subdivisions
Lexp(C2(5)).
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p s1 s2 1 2 3 4 5

1 − ± 0 0 0 1 1
0 1 0 0 1
0 1 1 0 0

2 + − 0 0 1 1 0
1 0 0 0 1
1 0 1 0 0

3 + + 0 0 1 1 0
1 0 0 0 1
1 0 1 0 0

We introduced pushing-/pulling-subdivisions, and hence lexicographic
subdivisions, as regular subdivisions. For that to be true, we have to verify
that there are heights realizing the subdivision. We now state (and of course
prove) one of our main theorems of this section. It asserts that under rather
mild restrictions on the heights the signs of the heights indeed determine a
lexicographic subdivision.

Theorem 2.18. Let V = {v1, v2, . . . , vn} ⊂
� d be a set in convex and general

position and w = (w1, w2, . . . , wn) ∈
� n a non-zero height vector satisfying

|wi+1| ≤ ε|wi| for all i ∈ [n−1]. Further, let p := min({i : wi < 0} ∪ {n− d}).
Then for sufficiently small ε > 0 the subdivision T (V, w) induced by w is iso-
morphic to Lexp(V ).

Before we prove the theorem we need a rather technical lemma.

Lemma 2.19. Let V = {v1, v2, . . . , vn} ⊂
� d be as above and

w = (w1, w2, . . . , wn) ∈
� n a non-zero height vector satisfying |wi| ≤ ε|w1|

for i = 2, . . . , n. Then for sufficiently small ε > 0 star(v1; V
w) ∼= {v1 ∗ F :

F ∈ C(∂P ′)} with P ′ = conv(V \{v1}).

We postpone the proof of the lemma till later (thereby making it easier
for the reader to skip it).

Proof of Theorem 2.18. In the proof we denote by Vi := {vi, vi+1, . . . , vn} a
subset of the vertices and by V w

i the convex hull of the lifted subset (so Vi

is the projection of V w
i along the last coordinate). We proceed by induction

on |Vi| starting with Vp.
The heights of V w

p satisfy |wj| ≤ ε|wp| for j > p and so by Lemma 2.19
the lower faces of V w

p form a subdivision of conv Vp as obtained by pulling vp.
If p = n − d then Vp is a simplex which is unaffected by pulling, otherwise
wp is negative and the star of vp in V w

p is a pyramid over conv Vp+1. So the
lower faces involving vp are joins over the boundary of convVp+1.
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Now assume that for i + 1 ≤ p the lower faces of V w
i+1 give a subdivision

of Vi+1 isomorphic to pushing vi to vp−1 and pulling vp. If we add vi then
none of the lower faces of Vi−1 vanish due to Lemma 2.19. New faces involve
only the shadow boundary of Vi+1 and wi > wi+1.

Proof of Lemma 2.19. We show that the vertex figure of v1 in V w is iso-
morphic to P ′. We do that by considering the intersection of the cone
C = {vw1

1 + t(vw1

1 − x) : x ∈ V w} (with cone point vw
1 ) with the hyperplane

H = {x ∈
� d+1 : xd+1 = 0}.

Let v̂i be the point of intersection of aff{vw1

1 , vwi
i } with H for i = 2, . . . , n.

Then v̂i is given by

v̂i = v1 + λi(vi − v1) with λi satisfying

0 = w1 + λi(wi − w1)

⇔ λi =
w1

w1 − wi
.

Moreover, λi > 0 since w1 and w1 − wi have the same sign and so every ray
emanating from vw1

1 through a point of V w intersects H in a unique point.
As the points V are in general position, Proposition 1.5 assures that every

∆ < δ(v1, . . . , vn) is the radius of an open ball centered at vi in which we
may perturb vi while still retaining general position. Thus the points v̂i are
still in general position if ‖v̂i − vi‖ < ∆ for all i = 2, . . . , n (cf. Figure 2.4).
In terms of ε that means

‖v̂i − vi‖ = ‖(v1 − vi)− λi(v1 − vi)‖

= ‖(1− λi)(v1 − vi)‖

=
|wi|

|w1 − wi|
‖v1 − vi‖

<
ε|w1|

|w1| − ε|w1|
‖v1 − vi‖

=
ε

1− ε
‖v1 − vi‖ < ∆

which is satisfied for ε < ∆
D+∆

with D := max{‖vi − v1‖ : i = 2, . . . , n}. So
conv{v̂2, . . . , v̂n} ∼= conv{v2, . . . , vn} is isomorphic to the vertex figure V w/v1

which proves our claim.

So far, we have treated lexicographic subdivisions and perturbed, or rather
extended, Gale transforms in much detail. Concluding this chapter, we will
put the pieces together by showing how to encode lexicographic subdivisions
in Gale transforms.
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v1

(

v1

w1

)

∆vi
v̂i

(

vi

ε|w1|

)

Figure 2.4: Illustration of the proof of Lemma 2.19

Theorem 2.20. Let V = {v1, . . . , vn} ⊂
� d be the vertices of a d-polytope P

in general position and

w′ = (w, � )T = (w1, w2, . . . , wn−d−1, 0, . . . , 0)T ∈
� V ∼=

� n

a height vector. Further, let G = (In−d−1 G′) ∈
� (n−d−1)×n be a Gale trans-

form of V . Then the extension of G by one column

Gw := (−w G) = (−w In−d−1 G′)

is a Gale transform of a polytope Pw ⊂
� d+1 realizing the regular subdivi-

sion of V induced by w, i.e. F `(Pw) ∼= T (V ; w). The remaining faces are
v0 ∗ C(∂P ), where v0 is the vertex that corresponds to the first column of
Gw.

Proof. It is rather obvious that Gw is a Gale transform of a polytope. The
necessary and sufficient conditions for Gw being a Gale transform are that 1)
Gw has full rank and 2) that for each oriented linear hyperplane at least two
points of Gw (viewed as a set of column vectors) lie in the positive halfspace.
Since G already satisfies both conditions so does Gw.

Next we will determine the vertices of the polytope Pw. For that, observe
that Gw arises as the result of column operations on the matrix Ĝ = ( � G).
So there is a non-singular matrix U ∈

� (n+1)×(n+1) with k := n− d− 1 such
that GwU = Ĝ and

U :=























1
w1 1
...

. . .

wk 1
0 1
...

. . .

0 1






















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Now, Ĝ is a Gale transform of P̂ = v0 ∗ P , a pyramid with base P and
apex v0. Taking the pyramid over a polytope is a combinatorial construction
and the only condition is that v0 does not lie in the affine hull of P . If
we elevate our setting into the realms of projective geometry by introducing
homogeneous coordinates, the points

V̂ :=





� v1 v2 · · · vn

1 0 0 · · · 0
0 1 1 · · · 1



 ∈
� (d+2)×(n+1)

serve our needs as vertices of P̂ . Readers familiar with projective geometry
will notice that we took the liberty of choosing a point at infinity as our
apex v0.

So, before dehomogenizing, the actual vertices of the polytope Pw are
given by

Vw := V̂ UT =





� v1 v2 · · · vk vk+1 · · · vn

1 w1 w2 · · · wk 0 · · · 0
0 1 1 · · · 1 1 · · · 1





as is easily verified. Applying a suitable projective transformation to Vw gives
the desired result.

Definition 2.21. For a simplicial d-polytope P = convV ⊂
� d with vertices

V = {v1, . . . , vn} ⊂
� d in general position and a height vector w ∈

� n−d−1

satisfying the conditions of Theorem 2.18 and p ≥ 0 accordingly, let Gw be
the Gale transform of Theorem 2.20. We define Lex-Pyrp(P ) ⊂

� d+1 as the
polytope corresponding to Gw. So Lex-Pyrp(P ) has as proper faces the cells
of the lexicographic triangulation Lexp(P ) and v0 ∗ C(∂P ), where v0 is the
apex as in Theorem 2.20.

From the theorem we get two ugly (viz. technical) yet useful by-products.

Corollary 2.22. Let V and G be as in Theorem 2.20 and w = (w1, . . . , wn−d−1).
If ‖w‖ sufficiently small, then the perturbed Gale transform

G̃w =











w1 1
w2 1

. . .
. . .

wn−d−1 1

G′











(2.1)

represents a regular subdivision of V with height vector w ′ = (w′
1, w

′
2, . . . , w

′
n−d−1),

w′
i = (−1)i

i
∏

`=1

w` for i ∈ [n− d− 1].
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Proof. For |wi| sufficiently small the part of the matrix right to the bar is
still a Gale transform of a polytope combinatorially equivalent to conv(V ).
Since Gale transforms are unique up to non-singular linear transformations
we can restore the identity matrix right of the bar by row-operations applied
to G̃w. This linear transformation also acts on the first column resulting in
−w′ and so the transformed matrix looks like (−w′ In−d−1 G′′). Then using
Theorem 2.20 proves the claim.

In terms of controlled perturbations of Gale transforms, the next corollary
goes a considerable step further.

Corollary 2.23. For the prerequisites as in Corollary 2.22 let

u = (u1, 0, u3, 0, . . . , 0, uk−1) ∈
� n−d−1

be such that |ui| < |wi|·|wi−1| for i = 1, 3, . . . , k−1 and consider the perturbed
Gale transform

G̃w,u =

























w1 1
u1 w2 1

0 w3
. . .

u3
. . .

. . .
. . .

. . .
. . .

0 wk−1 1
uk−1 wk 1

G′

























.

Then G̃w,u induces the same subdivision as G̃w.

Proof. With the help of suitable row operations the matrix G̃w,u can be
brought into the form of (2.1). The entries wi are modified to w′

i = wi−
ui

wi−1

for i even and w′
i = wi otherwise. Obviously, wi and w′

i have the same sign
and hence induce the same subdivision as ‖w‖ is sufficiently small.
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Chapter 3

Deformed Products and
Projections

Im großen Garten der Geometrie kann sich
jeder nach seinem Geschmack einen Strauß
pflücken.
—David Hilbert

We finally reach the peak level in this last chapter. We will retrace the
polytopes constructed by Joswig and Ziegler (2000) and Ziegler (2004), but
our approach starts from a, say, more conceptual point of view. In both
of the mentioned articles, the polytopes under scrutiny are constructed as
projections of high dimensional deformed products of polytopes. The key
ingredients to both constructions are (well) known facts about projections of
polytopes as well as suitable, although ad hoc, deformations of the polytopes
to be projected. Due to the latter, a full combinatorial description of the
projections was either hard to come by or not available at all. This we will
remedy by our treatment of the subject.

Needless to say, that the interest in Neighborly Cubical Polytopes of Joswig
and Ziegler and the Deformed Products of Polytopes of Ziegler goes beyond
their novel construction techniques. Neighborly cubical polytopes turned out
to solve several open problems in polytope theory (cf. the above mentioned
articles), and they continue to open up new areas of application, even as we
write. We warmly recommend to the reader the recent article of Joswig and
Schröder (2005), where neighborly cubical polytopes serve as carriers for the
embedding of polyhedral surfaces into 3-space. One more thing worth men-
tioning is that neighborly cubical polytopes once were the fattest polytopes

33
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in existence. Fatness is a quantity common to the study of f -vector cones.
At present1, the high score in fatness is held by the Projected Deformed
Products of Polygons. Given that both families of polytopes draw on similar
construction principles, one might presume that Deformed Products will rise
to further glory . . . so stay tuned.

Highly complex structures are easy to provide in high dimensions, but,
alas, in low dimensions such as

� 4 we lack the ingenious imagination for such
constructions. So the main reason for studying projections is their ability
to carry over some of the structure to lower dimensions. In that spirit,
we start off by investigating projections of polytopes, thereby introducing
(to the reader) the concept of a strictly preserved face. Determining the
combinatorial type of a projection a-priori is in general a rather hopeless
venture/undertaking. The mentioned articles circumvent these problems by
considering orthogonal products whose canonical projections are trivial, i.e.
the projections yield the involved factors, and alter them in a controlled
manner giving rise to fascinating specimens of geometry. These ideas will be
studied under the headline of deformed products.

3.1 Projections

Let π :
� d →

� e be a surjective, linear map with d ≥ e, then we call π an
projection map. As π is an epimorphism between vector spaces, it is given
by x 7→ π(x) = Bx where B ∈

� e×d is a matrix of full row rank (= e).

We take for granted that the projections of polytopes are polytopes as
well. But nevertheless, there is no combinatorial approach to the theory
of projections, i.e. in general there is no combinatorial data that deter-
mines beforehand the type of the projection. For example, the well-known
Minkowski sum of two polytopes is a projection of a product under the map-
ping (x, y) 7→ x + y. It does, however, depend intrinsically on the coordina-
tization of the involved polytopes (see Ziegler (1995) for details).

In this section we will investigate some properties of projections. In par-
ticular, we study faces that retain their structural properties under projec-
tion. For that we start with the following definition.

Definition 3.1 (Strictly preserved faces). Let P ⊂
� d be a d-polytope,

π :
� d →

� e a projection map and Q := π(P ) the projection of P . A k-face
F ≤ P is strictly preserved by π if

1August 18, 2005
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i) G = π(F ) is a k-dimensional face of Q combinatorially equivalent to
F , and

ii) the preimage π−1(G) is F .

The first condition is rather intuitive as it states that the combinatorial
type of a face is preserved. The second condition demands that there is no
other face that collapses onto F . Figure 3.1 shows (inevitably plane) drawings
of two different 3-polytopes as well as their projections to the plane.

 

PSfrag replacements

v

v

e

e

f

f ′

f = f ′

(a) Projection of a stacked cube. No
non-empty face is strictly preserved.

(b) Projection of a combinatorial
cube. All vertices and some of the
edges are strictly preserved as indi-
cated

Figure 3.1: In Figure (a) the vertex v falls into the interior, the projection
of the vertical edge e is still a face but degenerates to a vertex, and the
horizontal edges f and f ′ get identified by the projection. Figure (b) shows
a Goldfarb cube whose vertices are preserved by the projection.

Although the definition expresses formally what one should have in mind
when talking about faces being strictly preserved by projection, it hardly
gives any idea of how to check the conditions for a face before the actual
projection is carried out.

Proposition 3.2. Let P ⊂
� d be a d-polytope, Q = π(P ) ⊂

� e the image
of a projection π of P and F ≤ P a face of P . Then π(F ) is a face of Q if
F has a defining hyperplane H(c, cd+1) such that c is in the row span of B.
Moreover, every face of Q arises in that way.

Proof. Let (c, cd+1) ∈
� d+1 be such that F = H(c, cd+1) ∩ P and suppose

that c is in the row span of B, i.e. there is a ĉ ∈
� e such that cT = ĉT B. For
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an arbitrary x ∈ P let x̂ = π(x) ∈ Q be its projection, then cd+1 ≥ cT x =
ĉT Bx = ĉT x̂ and with equality only if x ∈ F . So H(ĉ, cd+1) is a supporting
hyperplane of Q and π(F ) = H(ĉ, cd+1) ∩Q.

For the second statement, let G ≤ Q be an arbitrary face with G =
Q ∩ H(ĉ, cd+1). Define cT := ĉT B as the pullback with respect to π. Then
it is easily seen that H(c, cd+1) is a supporting hyperplane of P with a non-
empty intersection with P .

The next proposition tackles the second condition as dictated by Defini-
tion 3.1.

Proposition 3.3. Let P ⊂
� d be a d-polytope and π :

� d →
� e an orthogonal

projection. Let F ≤ P be a k-face of P and aff(F ) = x + L be its affine hull
with x ∈ F and L a linear subspace. Then the image π(F ) is combinatorially
equivalent to F if, and only if, ker(π) ∩ L = { � }.

Proof. The image is combinatorially equivalent to F if the restriction π|F is
a bijection. To simplify matters, we note that π|F is surjective since π is and
so it suffices to show that π|L is injective. If two points x, y ∈ L get identified
by π, that is π(x) = π(y), then x − y lies in ker(π). Thus ker(π) ∩ L = { � }
if, and only if, π|L is injective.

The affine hull of a k-face F ≤ P is given by aff(F ) = {x ∈
� d : A′x = b′}

where A′ ∈
� `×d is a matrix the rows of which are normals to facets containing

F . ` ≥ n− k.
Later, we will restrict ourselves to projections along coordinate axes and

thus we define the canonical projection πe :
� d →

� e that projects to the last
e coordinates, i.e. πe :

� d 3 (x, x′) 7→ x′ ∈
� e.

For the canonical projection the above results become considerably sim-
pler.

Corollary 3.4 (Ziegler (2004), Proposition 3.2). Let P ⊂
� d be a d-

polytope and F a k-face of P . Further, let A ∈
� `×(d−e) be the matrix whose

` ≥ d− k rows are the first d− e components of normals to facets containing
F . Then F is strictly preserved by πe if, and only if, the rows of A positively
span

� d−e.

Proof. If the rows of A positively span
� d−e they span

� d−e in the ordinary
sense and so A has full row rank. Furthermore, there is a λ ∈

� ` with λ > 0
and λT A = � T . Hence F satisfies the conditions of proposition (3.2) and
(3.3).

For the converse, observe that A has to have full row rank anyway and
F has a normal c ∈

� d as in proposition (3.2) iff c = ( � , c′) with c′ ∈
� k.
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3.2 Deformed Products

The term deformed product was coined in Amenta and Ziegler (1999) where
the authors give a unified approach to several, somewhat classical, polytopes
and their construction. These polytopes mainly arose in the study of linear
programs and pivot rules of the simplex algorithm but, from a different per-
spective, these polytopes exhibit extremal properties not unlike those studied
in the next section.

We will give their original definition of (rank 1) deformed products as
well as some minor results about the exterior representation of deformed
products. The emphasis on rank 1 hints at possible generalizations which we
will explore thereafter.

Definition 3.5 (Deformed Product – rank 1). Let P ⊂
� d and V, W ⊂

� e be convex polytopes, and let ϕ : P →
�

be an affine functional with
ϕ(P ) ⊆ [0, 1]. Then the (rank 1) deformed product of (P, ϕ) and (V, W ) is

(P, ϕ) ./ (V, W ) :=

{(

x

ϕ(x)v + (1− ϕ(x))w

)

: x ∈ P, v ∈ V, w ∈ W

}

⊂
� d+e

This definition gives a point-by-point view of the subject and thus is un-
usable for computational efforts. To make deformed products combinatorial
assume that V and W are normally equivalent polytopes, i.e. they are combi-
natorially equivalent polytopes whose corresponding facet normals coincide.
Hence V = P (B, b) and W = P (B, b′) where the rows of B ∈

� n×e are facet
normals and b, b′ ∈

� n are right hand sides leading to combinatorially equiv-
alent polytopes. Next, let P = P (A, a) with A ∈

� m×d and let the affine
functional be given by ϕ(x) = cT x + c0 and define C := (b− b′)cT ∈

� n×d.

Proposition 3.6. For V, W normally equivalent the deformed product
(P, ϕ) ./ (V, W ) is given by the solutions to the following set of inequalities

(

A �
C B

) (

x
y

)

≤

(

a
(1− c0)b + c0b

′

)

.

Proof. Due to an observation of R. Seidel (cf. Remark 3.8 in Amenta and
Ziegler), the deformed product (P, ϕ) ./ (V, W ) is given by the projection
along t of











x
u
t



 :
x ∈ P
u = (1− t)v + tw, v ∈ V, w ∈ W
t ∈ [0, 1]







∩











x
u
t



 : cT x + c0 = t






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This polytope is given by

A x ≤ a

B y+(b− b′) t ≤ b

t ≤ 1

−t ≤ 0

cT x −t = −c0.

Now, one Fourier-Motzkin elimination step gives the desired result.

Obviously, the matrix C has rank 1, which should explain the supplement in
the name of the definition.

The key point to note from the above proposition is that in case V , and
therefore W , are simple polytopes the condition that C has rank 1 is far too
restrictive.

Definition 3.7 (Deformed Product – rank r). Let P = P (A, a) ⊂
� d

and Q = P (B, b) ⊂
� e two full-dimensional simple polytopes with B ∈

� n×e. For a matrix C ∈
� n×d with rank C = r, let M > 0 such that

P (B, M b− C x) ∼= Q for all x ∈ P . We define the rank r deformed product
P ./C Q of P and Q to be the polytope whose points satisfy

A x ≤ a

C x + B y ≤M b.

Note that such an M always exists: dividing the last (matrix) inequality
by M , the entries in 1

M
C become arbitrarily small. Hence the above polytope

is equivalent to the standard product P ×Q with a small perturbation of the
facet normals of the second factor. But since P × Q is a simple polytope,
small perturbations do not change the combinatorics. This remark proves
the following proposition.

Proposition 3.8. The polytopes P × Q and P ./C Q are combinatorially
equivalent.

All polytopes that we will construct are deformed products. We conclude this
section with the presentation of a classical family of iterated rank 1 deformed
products, the Goldfarb Cubes.

Example 3.9 (Goldfarb Cubes). In the mid 80’s Donald Goldfarb refuted
the conjectured polynomial running time of the simplex algorithm with the
shadow boundary pivot rule. He did so by constructing an infinite family
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of combinatorial cubes with the property that all vertices lie on the shadow
boundary which in our terminology reads: all vertices survive the projection
to the plane. We will study them here mainly for two reasons. First, they
are prime examples of deformed products and their projections can be under-
stood without sophisticated tools. As the constructions get more involved,
the way will be paved (or is it already?) with phrases like ”for ε sufficiently
small”. So the second reason is that for the Goldfarb Cubes all the nebulous
parameters can be pinpointed! Let us mention that the following construc-
tion deviates from the one given by Donald Goldfarb. But since it has the
same qualities as the original we will call it Goldfarb Cubes nevertheless.

Proposition 3.10. For n ≥ 3 and 0 < ε < 1, let Gn be defined by

Gn :



















±ε 1
1 ±ε M1

1
. . .

...
. . . ±ε Mn−3

1 ±ε Mn−2

−1 −1 · · · −1 ±ε Mn−1



















.

Then Gd is a combinatorial n-cube if M ≥ 2
ε

> 1.

Proof. We will verify by induction that for 1 ≤ i ≤ n the possible values of xi

form a proper (non-singular) interval for all valid choices of x1, x2, . . . , xi−1,
thus proving the claim. Since the distortion in the last inequality is different
from the others, we treat it separately.

We prove that any solution of the above system satisfies M i > |xi|.
For i = 1 see that M > 1

ε
> |x1|. For i > 1 we note that, by induction

|xi−1| < M i−1, and thus

|xi| ≤
1

ε
(M i−1 + |xi−1|) <

2

ε
M i−1 ≤M i.

So (2 ≤ i ≤ n−1): M i−1−|xi−1| > M i−1−M i−1 = 0. For the last inequality
we get that

Mn−1 −

n−2
∑

i=1

|xi| > Mn−1 −

n−2
∑

i=1

M i > Mn−1 −
Mn−1 − 1

M − 1

=
Mn − 2Mn−1 + 1

M − 1
=

(M
n
2 − 1)2

M − 1
> 0.



40 CHAPTER 3. DEFORMED PRODUCTS AND PROJECTIONS

The next thing we have to look into is that the projection to the last two
coordinates preserves all vertices. Later, we will see that Chapter 2 furnished
us with tools to treat questions about projections but now we will verify it
by hand.

To guarantee that a vertex v ∈ Gn survives the projection it is, by Corol-
lary 3.4, sufficient that the n− 2 components of normals to v positively span

� n−2. So let σ = (σ1, σ2, . . . , σn) ∈ {−, +}n denote facets that contain v and
let

Ḡσ :=



















σ1ε
1 σ2ε

1
. . .
. . . σn−2ε

1
−1 −1 · · · −1



















∈
� n×(n−2)

be the matrix whose rows are the first n−2 components of the corresponding
facet normals.

Proposition 3.11. Let Ḡσ be as above. The rows of Ḡσ positively span
� n−2

if ε < 1/2.

Proof. What we show is that the claim is true if we delete the first row from
Ḡσ, and thus for Ḡσ as well.

First, Ḡσ has full row rank independent of the choice of σ and ε: Deleting
the first and last row leaves a square matrix with determinant 1.

Now, suppose that we have a dependence given by α = (α1, α2, . . . , αn) ∈
� n such that α1 = 0, which amounts for that fact that we dropped the first
row from Ḡσ. It follows that αn 6= 0 and so we can assume that αn = 1. The
other coefficients are subject to αi = 1 − σi−1εαi−1 for i = 2, . . . , n − 1, as
can be seen by inspecting the (i− 1)-st column. It follows by induction that

αi ≤
∑i−1

k=0 εk = 1−εi

1−ε
and thus αi ≥ 1− εαi−1 ≥ 1− ε1−εi

1−ε
> 0 if ε < 1

2
.

See Figure 3.1(b) for a 3-dimensional Goldfarb Cube and its projection.

The Goldfarb Cubes constructed in the last section had the property
that a projection to the plane preserved all vertices. In the terminology of
Grünbaum (2003) that means that the d-cube, for d ≥ 3, is dimensionally
0-ambiguous, i.e. there is a polytope P with dim(P ) < d whose 0-skeleton
is isomorphic to that of the d-cube. As the 0-skeleton refers to the set of
vertices, the above statement boils down to the fact that there are e-polytopes
(e 6= d) different from the d-cube that have 2d vertices, which should not come
as a surprise.
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In Joswig and Ziegler (2000) the question about dimensional k-ambiguity
of d-cubes is investigated for higher k. The main result in their article is the
following.

Theorem 3.12 (Joswig and Ziegler (2000), Theorem 17). Let n, d ∈ �
with n ≥ d. Then there is a cubical d-polytope whose (b d

2
c − 1)-skeleton is

isomorphic to that of a n-cube.

They prove the result by explicitly constructing a combinatorial n-cube whose
projection to d-space satisfies the claim made by the theorem and they give a
complete description of the combinatorial structure of the projection, namely
a Cubical Gale’s Evenness Condition.

In this section, we will reinvent the polytopes of Joswig and Ziegler but
with considerably more degrees of freedom.

Construction 3.13. Let n, d ∈ � with n > d and let Q ⊂
� d−2 be a

neighborly simplicial (d− 2)-polytope on n − 1 vertices in general position.
Furthermore, choose an arbitrary but fixed ordering of the vertices of Q and
let G ∈

� (n−d)×(n−1) be a Gale transform of Q of the form G = (In−d G′),
where we denote by gT

1 , gT
2 , . . . , gT

d−1 ∈
� n−d the columns of G′. We define

the polytope Ĉn(Q, d) by the following set of inequalities





























±ε b1

1 ±ε b2

1
. . .

...
. . . ±ε bn−d

1 ±ε bn−d+1

g1 ±ε bn−d+2
...

. . .
...

gd−1 ±ε bn





























Again, each row corresponds to two facets. The single vertical bar indicates
that we will project the polytope to the last d coordinates.

From the discussion in the last section it should be clear that Ĉn(Q, d) is
an instance of a deformed product and for appropriate choices of the bi’s it
is indeed a combinatorial n-cube.

Define NCPd(Q) := πd(Ĉn(Q, d)) ⊂
� d as the projection of Ĉn(Q, d) to

the last d coordinates. We contend that NCPd(Q) proves the claim made
by Theorem 3.12 and thus, we will verify that every k-face of Ĉn(Q, d) with
k = bd

2
c − 1 survives the projection to d-space.



42 CHAPTER 3. DEFORMED PRODUCTS AND PROJECTIONS

In light of Corollary 3.4, this can be accomplished by showing that for
every k-face F ≤ Ĉn(Q, d) the first n − d components of normals to facets
containing F positively span

� n−d.
We will approach that task in the following, redundant way. We show

that for an arbitrary vertex v ∈ vert(Ĉn(Q, d)) all k-faces that contain v
survive the projection. By, generally abided, abuse of notation we identify
the vertex v with the intersection of its incident facets.
So we choose σ = (σ1, σ2, . . . , σn) ∈ {−, +}n and define

Ḡσ :=





























σ1ε
1 σ2ε

1
. . .
. . . σn−dε

1
g1
...

gd−1





























∈
� (n−d)×n

as the matrix made up of the first n − d components of facet normals that
define the vertex σ. We actually see that σ1, . . . , σn−d alone determine Ḡσ

but we insist on the definition because it will turn out appropriate when we
analyze the facial structure of the projection.

Now here comes the thing: By Corollary 2.22 this matrix can be viewed
as a perturbed Gale transform for a pyramid over Q and therefore encodes
a regular subdivision of Q with heights w ∈

� n−1, where

wi = (−1)iεi
i

∏

j=1

σi.

Stronger yet, the height vector satisfies |wi+1| ≤ ε|wi| and thus, for ε > 0
small enough, meets the condition of Theorem 2.18. Consequently Ḡσ corre-
sponds to Lex-Pyrp(Q) where

p := min({i ∈ [n− d] : σi 6= −} ∪ {n− d}). (3.1)

Theorem 3.14. Let α = (α1, α2, . . . , αn) ∈ {−, 0, +}n name a face of
Ĉn(Q, d). Then α is a face of NCPd(Q) if, and only if, |α| = (|α1|, . . . , |αn|) ∈
{0, 1}n is a coface of Lex-Pyrp(Q) where p is defined by (3.1) by a vertex con-
tained in α.

Proof. Let α be a coface of Lex-Pyrp(Q). In the language of Gale transforms

that means that Ĝσ(α), the rows of Ĝσ corresponding to nonzero entries of α,
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have a strictly positive dependence. The polytope Lex-Pyrp(Q) is a (d− 1)-
dimensional simplicial polytope and so every coface contains n − (d − 1)
vertices that affinely span

� d−1 and, hence, Ĝσ(α) has full rank. Corollary
2.22 witnesses the fact that α is a face of NCPd(Q).

Conversely, suppose that α is a face of NCPd(Q). Then α corresponds to
a face of Ĉn(Q, d) having a normal orthogonal to the direction of projection
and, by the virtue of Gale transforms, is a coface of Lex-Pyrp(Q). The rank
condition is trivially satisfied according to the argumentation above.

Note, that all facets of NCPd(Q) are strictly preserved faces of Ĉn(Q, d)
and, hence, NCPd(Q) is indeed a cubical polytope.

The upcoming corollary is implicit in the theorem.

Corollary 3.15. The projection NCPd(Q) has the (bd
2
c − 1)-skeleton of the

n-cube.

Proof. By our choice, Q is a neighborly (d − 2)-polytope which means that
every subset of bd−2

2
c = bd

2
c − 1 vertices is a face of Q. This property stays

intact if we switch to Lex-Pyrp(Q).

The combinatorial structure is intrinsically dependent on Q whose de-
scription can be rather wild. Luckily, cyclic polytopes as well as their lexi-
cographic triangulations are rather straightforward, to which, we hope, the
reader agrees after having read Section 2.2. To this end, we now give a thor-
ough account on the combinatorics of the neighborly cubical polytopes for
cyclic polytopes.

Theorem 3.16 (Cubical Gale’s Evenness Condition). Let NCPd(n) :=
NCPd(Q) with Q = Cd−2(n−1) be the cyclic (d−2)-polytope on n−1 vertices
in the order induced by the moment curve. For α ∈ {−, 0, +}n with d − 1
zero entries denote by p ≥ 0 the least number such that αp+1 = 0. Then α is
a facet of NCPd(n) if one the following conditions is satisfied:

• p = 0 and |α| = (|α2|, . . . , |αn|) ∈ {0, 1}
n−1 satisfies the (ordinary)

Gale’s Evenness Condition.

• 0 < p ≤ n − d and α is of the form (−,−, . . . ,−, σ
↑
p

, 0, αp+2, . . . , αn).

Then (|αp+2|, . . . , |αn|) satisfies Gale’s Evenness Condition and

– starts with an odd number of zeros, if σ = +, or

– starts with an even number of zeros, if σ = −.
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• p = n− d + 1 and α is of the form (−,−, · · · ,−,±, 0, 0, . . . , 0).

Proof. Consider the polytope Lex-Pyrp(Q) that carries the combinatorics ac-
cording to Theorem 3.14. For p = 0, α needs to be a co-facet containing the
vertex v0. By definition, these are v0 ∗ F where F is a facet of Q and hence
(|α2|, . . . , |αn|) has to satisfy Gale’s Evenness Condition.

For p > 0, the corresponding co-facet is contained in Lexp(Q) whose
combinatorial description was given in Corollary 2.17.

In the next table we list the facets of NCP4(6), at which the Cubical
Gale’s Evenness Condition can be seen.

p α1α2α3α4α5α6

0 0 0 0 ± ± ±
0 ± 0 0 ± ±
0 ± ± 0 0 ±
0 ± ± ± 0 0
0 0 ± ± ± 0

1 + 0 0 0 ± ±
+ 0 ± 0 0 ±
+ 0 ± ± 0 0
− 0 0 ± ± 0

2 − + 0 0 0 ±
− + 0 ± 0 0
− − 0 0 ± 0

3 − − + 0 0 0
− − − 0 0 0

We claimed at the beginning of this section that we can add degrees of
freedom to the construction of the neighborly cubical polytopes as compared
to Joswig and Ziegler (2000). In order to justify our claim we need the
following observation.

Lemma 3.17. Let v be a vertex of NCPd(Q), determined by α ∈ {−, +}n .
Then the vertex figure NCPd(Q)/v is isomorphic to Lex-Pyrp(Q) with p given

by (3.1) and, hence, contains C(∂ Q).

Proof. First, we determine the vertex figure NCPd(Q)/v. Due to the fact that

v survives the projection, v has a defining hyperplane H(c, δ) whose normal
is of the form c = ( � , c′)T . Now, we if choose δ′ < δ appropriately, then
H(c, δ′) is a hyperplane that strictly separates v from the other vertices in
Ĉn(Q, d). But then H(c′, δ′) has the same (separation) property in NCPd(Q).
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The vertex figure is simplicial, since all faces containing v that survive the
projection are cubes, and the facial structure of NCPd(Q)/v is determined by

the incidences of surviving faces containing v. By Theorem 3.14, these faces
are determined by Lex-Pyrp(Q), which proves the claim. Moreover, the edge
α′ = (0, α1, . . . , αn) survives the projection as well and it corresponds to the
apex of Lex-Pyrp(Q). If we take an edge figure, i.e. an iterated vertex figure,
then this corresponds to the link of v0 in Lex-Pyrp(Q) which corresponds to
C(∂ Q) by Definition 2.21.

Before we close this section, we hope to enlighten the reader by pictures of
what we have been dealing with. Figures 3.2(a) and 3.2(b) show Schlegel
diagrams of the neighborly cubical polytopes NCP4(5) and NCP4(6) respec-
tively. Needless to say that 3-dimensional visualizations of 4-dimensional
objects drawn on 2-dimensional paper are expressionally unsatisfactory. We
invite the reader to visit

http://www.math.tu-berlin.de/~sanyal/diploma

for an interactive version of the presented figures.

PSfrag replacements

v

e

e

f

f ′

f = f ′

(a) NCP4(5): A cubical 4-polytope with
the graph of the 5-cube.
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(b) NCP4(6): A cubical 4-polytope with f -
vector (64, 192, 192, 64), which amounts to
the fact that the Schlegel diagram is rather
crowded.

Figure 3.2: Figures (a) and (b) show Schlegel diagrams of the neighborly
cubical polytopes NCP4(5) and NCP4(6) respectively.
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3.3 Deformed Products of Polygons

Fatness, on which we digressed at the beginning of this chapter, seems to be
a driving force in the study of 4-dimensional polytopes. Ernst Steinitz, in
his seminal 3 pages article from (1906), pioneered the study of f -vector of
3-polytopes by giving linear inequalities that are satisfied by every f -vector.
Since then, many efforts have gone into the task of describing the cone of f -
vectors of 4-polytopes. Till the present day, it seems that the right question2

to ask is whether fatness is bounded for 4-polytopes. Space limitations make
us refrain from giving further details but the interested reader might find
satisfaction in Eppstein, Kuperberg, and Ziegler (2003) and Ziegler (2002).

Ziegler (2004) constructs 4-polytopes with fatness arbitrarily close to 9
by proving the following theorem.

Theorem 3.18 (Ziegler (2004), Theorem 1.1). Let n ≥ 4 be even and
r ≥ 2 then there is a 2r-polytope P 2r

n ⊂
� 2r, combinatorially equivalent to

a product of r n-gons, such that the projection π4 :
� 2r →

� 4 to the last
four coordinates strictly preserves the 1-skeleton as well as all the “polygon
2-faces” of P 2r

n .

The main purpose of this section is a generalized version of this theorem
and an explicit combinatorial description of the projected polytopes.

In order to give an appealing account on the combinatorics of projected
deformed products of polygons, we shall shortly discuss the description of
polygons and their products.

For an even polygon Pn with n ≥ 4 (n even) vertices pick one edge as
a starting point and label the edges in clockwise order with (∗, i) if the i-th
edge is odd and (i, ∗) otherwise. The labels of the vertices then correspond
to (i, j) if the vertex is in the intersection of (i, ∗) and (∗, j). The polygon
itself is labeled (∗, ∗) as it is an improper face. See Figure 3.3 for a labeled
6-gon. So for an n-gon with n even the face lattice, excluding the empty face,
is given by

Pn = {(i, i± 1) : i ∈ � n even} (vertices)

∪ {(i, ∗) : i ∈ � n even} (even edges)

∪ {(∗, i) : i ∈ � n odd} (odd edges)

∪ {(∗, ∗)} (polygon)

2Apart from the question to which the answer is obviously 42.
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Arithmetic operations in the description above are understood modulo n. In
that notation, there are vertices that will become important later which is
the reason why we give them special names. The vertices (0, 1) and (0, n−1)
will be called leading- and trailing vertex respectively. The remaining vertices
will be henceforth referred to as inner vertices.
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Figure 3.3: Labeling of a 6-gon

There is no doubt that this is a rather uncommon description of a poly-
gon. The advantages, however, are that this description has the same “nice”
properties that made the cube so easy to describe: given a face (i, j) then
the number of stars tells us its dimension. To fully appreciate the notation,
let us form products of polygons and adapt our formalism to it. Let n ≥ 4
and r ≥ 2. Then the faces of (Pn)r, the r-fold product of n-gons, are given
by vectors

(α1, α2 ; α3, α4 ; . . . ; α2r−1, α2r) ∈ (Pn)r.

The semicolons separate the factors from each other. As discussed in Section
1.3, if F1, . . . , Fr are non-empty faces of each factor then F := F1 × F2 ×
· · · × Fr is a face of the product (Pn)r and the dimension of F is dim(F ) =
∑r

i=1 dim(Fi). Analogous to the cube, if α ∈ (Pn)r represents F , then the
dimension of F can be read off α by counting the stars.

The observant reader might have noticed that for the case of Pn being a
quadrilateral (n = 4) Theorem 3.18 was already proved in the last section.
Indeed, the neighborly cubical polytope NCPd(2r) is an r-fold product of
quads and thus a deformed product of polygons. In the case of d being even,
the inequality system looks as follows:
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









































±ε b1

1 ±ε b2

1 ±ε b3

1 ±ε b4

. . .
...

±ε b2r−d−1

1 ±ε b2r−d

1 ±ε b2r−d+1

g1 ±ε b2r−d+2
...

. . .
...

gd−2 ±ε b2r−1

gd−1 ±ε b2r











































(3.2)

A close examination reveals that the first few quads have a rather particular
shape (see Figure 3.4). One way to interpret the shape is that the normals
(±ε, 0) arose as perturbations of the zero vector and (1,±ε) originated from
the vector (1, 0).

PSfrag replacements
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(1, +ε)

(1,−ε)

Figure 3.4: Scaled quad of an NCPd(2r)

The polygons that we will use for our construction of the Deformed Prod-
ucts of Polygons arise as perturbations of the above mentioned quads. We
encourage the reader to retrace the construction at Figure 3.5. In addi-
tion to the normals of the quad a0, a1, an/2, and an−1 choose points on the
line L equally distributed above and below an/2 and choose scaling factors
b1, b2, . . . , bn−1 such that the rescaled vectors 1

bi
ai lie on the parabola Q for

i = 1, . . . , n − 1. Setting b0 = 1, the points { 1
bi
ai : i = 0, . . . , n − 1} are in

convex position around the origin and thus the points x ∈
� 2 satisfying

aT
i x ≤ bi for i = 0, . . . , n− 1

determine a convex n-gon in the plane.
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Figure 3.5: Bold vectors denote the quad used in NCPd(2n). The remaining
ones are those added to obtain a n-gon.

For the finishing touch, we scale every even-indexed inequality by ε (see
Figure 3.6) and arrange the scaled normals and right hand sides into a matrix
A ∈

� n×2 and vector b ∈
� n, respectively.PSfrag replacements
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εan/2 = (ε, 0)

an/2+1εan−2
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Figure 3.6: Rescaled normals: even indexed normals are scaled by ε > 0.

If we substitute the polygons for the quads in the inequality system (3.2)
we obtain, by means of adaptations of the right hand sides bi, a deformed
product of polygons which we denote by P̂ r

n(Q, d) shown in (3.3).

The description in (3.3) heavily relies on the reader’s intuition. What
might baffle the reader most is that we nonchalantly used both matrices
and row vectors in the inequality system. This usage was meant to suggest
the following: As can be seen in (3.2), if we arrange the normals of each
quad in clockwise order, the odd and even indexed normals are subject to
different perturbations. In the transition from quads to even polygons (n >
4) these distortions can be naturally extended, i.e. newly added normals get
the perturbations according to their index parity. We hope the reader will
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indulge this pragmatic treatment.
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1
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1
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A br
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



























(3.3)

The reason for P̂ r
n(Q, d) being a combinatorial product of polygons is

that, again, perturbations of the facet normals can be countered by scaling
the right hand side appropriately.

Having reached that point, we only have to zero in on that we proved the
first half of the following generalization of a result of Ziegler (2004).

Theorem 3.19 (Deformed Products of Polygons). Let r ∈ � and let
n ≥ 4 and d = 2` ≤ 2r be even. Then there exist 2r-dimensional polytopes
P̂ r

n(Q, d) ⊂
� 2r combinatorially equivalent to r-fold products of n-gons whose

projection DPPd(Q, n) := πd(P̂
r
n(Q, d)) to the last d coordinates retains the

(`− 1)-skeleton.

Note that Ziegler’s original result asserts the survival of all “polygon 2-
faces”. These 2-faces are special in the sense that every edge is contained
in an n-gon and thus retaining the n-gons implies the preservation of the
1-skeleton. Therefore the above result can be sharpened that special `-faces,
that are faces that cover the (`− 1)-skeleton, survive the projection.

We constructed the deformed products of polygons as an alteration of the
neighborly cubical polytopes. From that it seems plausible that the projec-
tion of DPPd(Q, n) exhibits the same structural properties as for NCPd(Q).



3.3. DEFORMED PRODUCTS OF POLYGONS 51

Let v be a vertex of P̂ r
n(Q, d) and let

Ḡ(v) :=
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




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1
g1
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








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























∈
� 2r×(2r−d) (3.4)

the matrix whose rows are the 2r − d components of normals to facets that
contain v. We arranged the rows in a way as to match the combinatorial
description of v. That means that every row corresponding to an even edge
(ai, a

′
i) from a factor precedes the odd edge (1, ai+1) from the same factor.

By construction the entries ai and a′
i satisfy

ai ≤ ε and

a′
i < ε2

for all i ∈ [2r − d] and thus meet the requirements of Corollary 2.23, i.e. we
can neglect the entries a′

i in the further discussion.
The matrix Ḡ(v) therefore corresponds to a perturbed Gale transform

and the facial structure of the polytope associated to Ḡ(v) matches that of
Lex-Pyrp(Q) with

p := min({i ∈ [2r − d] : ai > 0} ∪ {2r − d}).

Take a moment time and see that this already proves the theorem. The
Gale transform Ḡ(v) corresponds to a perturbed pyramid over Q and is thus
a bd−2

2
c-neighborly (d − 1)-polytope. In consequence, every set of at most

bd
2
c − 1 rows might be deleted from Ḡ(v) such that the remaining rows are

still positively spanning. By Corollary 3.4, this guarantees the survival of
the corresponding face.

The last thing we aim at is to present to the reader the combinatorics of
the projection in case Q is the cyclic polytope Cd−2(2r − 1) with vertices in
standard order. We denote the projection by DPPd(n, r) in analogy to the
previous section.
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For the neighborly cubical polytopes, signs on the secondary diagonal
(a1, . . . , a2r−d) were in one-to-one correspondence with the combinatorial de-
scription of the vertex under consideration. For our combinatorial description
of the polygon, this is unfortunately not the case.

We can recover the situation by introducing the following sign function.

sign : � n ∪ {∗} → {−, 0, +}, i 7→























0 , if i = ∗
−, if i = 0
+, if i > 0 even
+, if i < n

2
odd

−, if i > n
2

odd.

Admittedly, this is not the most elegant way but the reader might come to
terms with it, after the following justification. By looking again at Ḡ(v)
as depicted in (3.4), the reader can convince himself that every odd entry ai

corresponds to the first component of an even edge of Pn and every even entry
corresponds to the second component of an odd edge. Now, by reinspecting
Figure 3.5, the reader will find that sign corresponds to the signs of the
respective components.

By extending sign componentwise to (Pn)r, this enables us to relate the
combinatorics of DPPd(n) to that of a neighborly cubical polytope.

Theorem 3.20. Let α ∈ (Pn)r name a (d − 1)-face F of P̂ r
n(Q, d) with

Q = Cd−2(2r − 1 ). Then F strictly survives the projection if and only if
sign(α) satisfies the Cubical Gale’s Evenness Condition.

Stating the conditions on α without reference to the Cubical Gale’s Even-
ness Condition, then this results in the following four cases for α. Let
α ∈ (Pn)r name a d − 1 dimensional face of P̂ r

n(Q, d) and let p ≥ 0 be
the least number with αp+1 = ∗. Then α′ = (αp+2, . . . , α2r) has to satisfy
that for every p + 2 ≤ i < j ≤ 2r with αi, αj 6= ∗ the number of ‘∗’ entries
#{i < k < j : αk = ∗} is even and

• p = 0 or p = 2r − d + 1

• 1 ≤ p ≤ 2r − d odd and α is of the form

α = (0, n− 1 ; 0, n− 1 ; . . . ; αp, ∗ ; α′)

– if αp = 0 then α′ begins with an even number of ∗ entries, or

– if αp > 0 even then α′ begins with an odd number of ∗ entries.

• 1 ≤ p ≤ 2r − d even and α is of the form

α = (0, n− 1 ; 0, n− 1 ; . . . ; 0, αp; ∗ , α′)
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– if αp = n− 1 then α′ begins with an even number of ∗ entries, or

– if αp = 1 even then α′ begins with an odd number of ∗ entries.

No doubt, these conditions are even worse than those for the neighborly
cubical polytopes, but that is combinatorics for you.

An example is more than appropriate and thus we exemplify the combi-
natorics at DPP4(6, 3)

p (α1, α2 ; α3, α4 ; α5, α6) sign(α1, α2 ; α3, α4 ; α5, α6)

0 ∗ ∗ ∗ o e o 0 0 0 ± ± ±
∗ o ∗ ∗ e o 0 ± 0 0 ± ±
∗ o e ∗ ∗ o 0 ± ± 0 0 ±
∗ o e o ∗ ∗ 0 ± ± ± 0 0
∗ ∗ e o e ∗ 0 0 ± ± ± 0

1 e ∗ ∗ ∗ e o + 0 0 0 ± ±
e ∗ e ∗ ∗ o + 0 ± 0 0 ±
e ∗ e o ∗ ∗ + 0 ± ± 0 0
0 ∗ ∗ o e ∗ − 0 0 ± ± 0

2 0 1 ∗ ∗ ∗ o − + 0 0 0 ±
0 1 ∗ o ∗ ∗ − + 0 ± 0 0
0 5 ∗ ∗ e ∗ − − 0 0 ± 0

3 0 5 e ∗ ∗ ∗ − − + 0 0 0
0 5 0 ∗ ∗ ∗ − − − 0 0 0

with e ∈ {2, 4} and o ∈ {1, 3, 5}. The right column of the table shows the
value of the sign function on the corresponding face α. The entry ± indicates
that the sign depends on the corresponding value of e or o, respectively.
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Zusammenfassung

Der Fokus dieser Diplomarbeit liegt in der Konstruktion und kombinatori-
schen Beschreibung von hoch-dimensionalen Polytopen. Polytope sind wohl-
bekannte Objekte der diskreten Geometrie. Eine Einführung in die Theorie
der Polytope sowie gebräuchliche Begriffe und Notationen werden im ersten
Kapitel gegeben.

Das zweite Kapitel gibt eine Übersicht zu Gale Transformierten und
polyedrische Unterteilungen. Gale Transformierte werden klassischer Weise
benutzt um hoch-dimensionale Polytope mit wenigen Ecken mit nieder di-
mensionalen Vektor Konfigurationen (gewöhnlich in der Ebene) zu assozi-
ieren. Diese Vektor Konfigurationen besitzen in einem präzisen Sinne die
gleiche kombinatorische Struktur und sind in den meisten Fällen handhab-
barer. In dieser Arbeitfinden Gale Transformierte jedoch ein neues An-
wendungsgebiet. Polyedrische Unterteilungen sind ein technischer Appa-
rat um geometrische Objekte mittels Familien von Polytopen, mit speziellen
Schnitteigenschaften, zu beschreiben. Wir verwenden Zeit (bzw. Platz) auf
diese Konzepte, da es sich herausstellt, dass die im letzten Kapitel konstru-
ierten Polytope mit diesen Mitteln auf eine natürliche Weise kombinatorisch
beschrieben werden können.

Die zentrale Konstruktion dieser Arbeit ist die der sogenannten deformier-
ten Produkte. Dabei handelt es sich um kartesische Produkte von Polytopen,
die auf eine kontrollierte Weise mit Hilfe von Gale Transformierten deformiert
werden. Die eigentlichen Polytope entstehen durch Projektion dieser Pro-
dukte. Für Polytope ist es im allgemeinen schwierig eine Aussage über
die Struktur einer Projektion zu treffen. In den betrachten Fällen weisen
wir nach, dass die Kombinatorik durch lexikographische Triangulierungen,
speziellen polyedrischen Unterteilungen, von zyklischen Polytopen beschrie-
ben werden kann. Wir illustrieren die Konstruktion an Hand von d-dimensio-
nalen Würfeln, die als Produkte von Steckensegementen entstehen, und Pro-
dukten von Polygonen. Dies führt zu den in Joswig and Ziegler (2000) und
Ziegler (2004) konstruierten Polytopen, deren Struktur sich mit den erarbeit-
eten Mitteln erstmals explizit beschreiben und nachvollziehen lässt.
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