Exercise sheet 4 for
Algebraic curves and the Weil conjectures

Kay Rülling

Exercise 4.1. Let k be a field with fixed algebraic closure $ar{k}$. Show that there is an $\mathcal{O}_{\mathbb{P}^1/k}$-linear isomorphism

$$\mathcal{O}_{\mathbb{P}^1/k}(-2) \xrightarrow{\sim} \omega_{\mathbb{P}^1/k}.$$

Conclude that $\Gamma(\mathbb{P}^1/k, \omega_{\mathbb{P}^1/k}) = 0$.

Exercise 4.2. Let k be a field of characteristic $\neq 2, 3$ with fixed algebraic closure \bar{k}. Let $a, b \in k$ and let $E \subset \mathbb{P}^2(\bar{k})$ be the projective variety $/k$ defined by $E = Z(X_2^2X_0 - (X_1^3 + aX_1X_0^2 + bX_0^3))$.

(1) Set $U = Z(y^2 - (x^3 + ax + b))$, where $x = X_1/X_0, y = X_2/X_0$ and $W = Z(z - (u^3 + auz^2 + bz^3))$, where $u = X_1/X_2, z = X_0/X_2$.

Show that $U, W \subset E/k$ are open and $E = U \cup W$.

(2) Show that E is an irreducible curve $/k$.

(3) Show that E is a smooth $/k$ if and only if $4a^3 + 27b^2 \neq 0$.

We assume $4a^3 + 27b^2 \neq 0$ in the following.

(4) Set $U_1 = U \setminus Z(y), U_2 = U \setminus Z(3x^2 + a)$ and $U_3 = W \setminus Z(1 - 2au - 3bz^2)$. Show that $E = U_1 \cup U_2 \cup U_3$ is an open covering.

(5) Define the differential forms

$$\alpha_1 := \frac{dx}{2y} \in \Gamma(U_1, \omega_E), \quad \alpha_2 := \frac{dy}{3x^2 + a} \in \Gamma(U_2, \omega_E),$$

$$\alpha_3 := -\frac{du}{1 - 2auz - 3bz^2} \in \Gamma(U_3, \omega_E),$$

where $\omega_E := \Omega^1_{E/k}$. Show that there is a differential $\alpha \in \Gamma(E, \omega_E)$ with $\alpha_{U_i} = \alpha_i, i = 1, 2, 3$.

(6) Show that we have an isomorphism $\mathcal{O}_E \to \omega_E, f \mapsto f \cdot \alpha$.

Exercise 4.3. Let k be a field with fixed algebraic closure \bar{k} and Y an affine k-variety with coordinate ring $k[Y] = A$. We write $\mathbb{P}^1_Y = \mathbb{P}^1 \times Y$ and $\mathcal{O}_{\mathbb{P}^1_Y}(r) = p_Y^* \mathcal{O}_{\mathbb{P}^1/k}(r)$, where $p_Y : \mathbb{P}^1 \times Y \to \mathbb{P}^1$ is the projection.

1Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103(RUD25) on Tue/Thu/Fri.
(1) Compute $H^1(\mathbb{P}^1_Y, \mathcal{O}_{\mathbb{P}^1_Y}(r))$ using Cech cohomology and the standard affine open cover of \mathbb{P}^1_Y.
(2) Show that there is a perfect pairing of finitely generated free A-modules
\[H^0(\mathbb{P}^1_Y, \mathcal{O}_{\mathbb{P}^1_Y}(-2 - r)) \otimes_A H^1(\mathbb{P}^1_Y, \mathcal{O}_{\mathbb{P}^1_Y}(r)) \rightarrow H^1(\mathbb{P}^1_Y, \mathcal{O}_{\mathbb{P}^1_Y}(-2)) \cong A. \]
(Recall that a pairing $\phi : M \otimes_A N \rightarrow A$ is perfect if the induced maps $M \rightarrow \text{Hom}_A(N, A)$, $m \mapsto \phi(m \otimes -)$, and $N \rightarrow \text{Hom}_A(M, A)$ are isomorphisms.)

Exercise 4.4. Let k be a field with fixed algebraic closure \bar{k} and X/k a smooth, irreducible, quasi-projective variety. Denote by $K = k(X)$ the function field of K.

(1) Let $V \subset X/k$ be a prime Weil divisor. For $U \subset X/k$ open define $\mathbb{Z}_V(U) = \mathbb{Z}$, if $U \cap V \neq \emptyset$, and $\mathbb{Z}_V(U) = 0$, else. Show that \mathbb{Z}_V is a flasque sheaf on X. Deduce that $\bigoplus_V \mathbb{Z}_V$ is a flasque sheaf on X.

(2) Since X is smooth the local rings $\mathcal{O}_{X,V}$ are DVRs and hence define a normalized discrete valuation $\text{ord}_V : K_X^\times \rightarrow \mathbb{Z}$. Show that there is a surjective morphism of sheaves $K_X^\times \xrightarrow{\oplus \text{ord}_V} \bigoplus_V \mathbb{Z}_V$, where K_X^\times denotes the constant sheaf on X defined by K_X^\times.

(3) Conclude that we have a flasque resolution of \mathcal{O}_X^\times
\[0 \rightarrow \mathcal{O}_X^\times \rightarrow K_X^\times \rightarrow \bigoplus_V \mathbb{Z}_V \rightarrow 0. \]
(\text{Hint: Use that } a \in \mathcal{O}_X^\times(U) \iff a \in K^\times \text{ and } \text{ord}_V(a) = 0, \text{ for all prime Weil divisors } V \text{ with } V \cap U \neq \emptyset.)

(4) Use the above resolution to compute
\[H^1(X, \mathcal{O}_X^\times) = \text{CH}^1(X). \]

Remark 1. Without any assumptions on X one can show $H^1(X, \mathcal{O}_X^\times) \cong \check{H}^1(X, \mathcal{O}_X^\times) \cong \text{Pic}(X)$, see Exercise 3, for the second equality.