Exercise 5.1. Let K be a complete discrete valuation field with perfect residue field k (i.e. $K = \text{Frac}(A)$ with A a complete DVR and $k = A/\mathfrak{m}$ is perfect) and fix a separable closure K^{sep}. Show that the maximal unramified extension K^{ur} of K in K^{sep} is a discrete valuation field with residue field k^{sep} the separable closure of k.

Exercise 5.2. Let K be a finite extension of \mathbb{Q}_p and denote by $e = e(K/\mathbb{Q}_p)$ its ramification index and by $v_K : K^\times \to \mathbb{Z}$ its normalized discrete valuation (so that $v_K(p) = e$). Denote by \mathfrak{m} the maximal ideal of \mathcal{O}_K and set $U_K^{(n)} := 1 + \mathfrak{m}^n$, $n \geq 1$. Let $\log : K^\times \to K$ be the group homomorphism from Exercise 4.4, (4). Show:

1. \log induces a map $\log : U_K^{(n)} \to \mathfrak{m}^n$, for all $n > \frac{e}{p-1}$. (Hint: Show that $v_K(z^j/j) > v_K(z)$, for all $j \geq 2$ and $z \in K$ with $v_K(z) > \frac{e}{p-1}$.)

2. For $x \in K$ with $v_K(x) > \frac{e}{p-1}$ the series $\sum_{j=0}^{\infty} x^j/j!$ converges, see Exercise 4.4. (Hint: If $j \in \mathbb{N}$ is written in the form $j = a_0 + a_1p + \ldots a_sp^s$, with $a_i \in [0, p-1]$, then $v_K(j!) = \frac{1}{p-1}(j - (a_0 + a_1 + \ldots + a_s))$.)

3. For all $n > \frac{e}{p-1}$ there is a well defined continuous map

$$\exp : \mathfrak{m}^n \to U_K^{(n)}, \quad x \mapsto \exp(x) := \sum_{j=0}^{\infty} \frac{x^j}{j!}.$$

4. For all $n > \frac{e}{p-1}$ the maps $\log|_{U_K^{(n)}}$ and $\exp|_{\mathfrak{m}^n}$ are inverse to each other, i.e. we have an isomorphism of topological groups

$$U_K^{(n)} \cong \mathfrak{m}^n.$$

Exercise 5.3. (1) Show that up to isomorphism there is a unique unramified quadratic extension of \mathbb{Q}_3 and it is isomorphic to $\mathbb{Q}_3(\sqrt{-1})$.

This exercise sheet will be discussed on November 21. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math.fu-berlin.de or l.zhang@fu-berlin.de

(2) Show that $\mathbb{Z}_3^\times/(\mathbb{Z}_3^\times)^2 = \{\pm1\}$.

(3) Show that up to isomorphism there are two ramified quadratic extensions of \mathbb{Q}_3 and they are isomorphic to $\mathbb{Q}_3(\sqrt{3})$ or $\mathbb{Q}_3(\sqrt{-3})$.

Thus all together we see that up to isomorphism there are only three quadratic extensions of \mathbb{Q}_3.

Exercise 5.4. Let K be a local field. Let p be the characteristic of its residue field.

1. Show that if $\zeta \in \bar{K}$ is an n-th root of unity with $(n, p) = 1$, then $K(\zeta)$ is unramified over K.

2. Show that K^{un} is obtained by adjoining all n-th root of unity with $(n, p) = 1$ to K. *(Hint: One inclusion follows from (1) the other from Hensel’s Lemma.)*