Exercise 3 for Number theory III^{1}

Kay Rülling

Exercise 3.1. Let K be any field and $K \hookrightarrow \overline{K}$ an embedding of K into an algebraic closure. Let L/K be an algebraic field extension.

- (1) Show that any K-linear homomorphism of fields $L \to \overline{K}$ can be extended to an K-linear automorphism of \overline{K} . (*Hint*: Use Zorn's Lemma.)
- (2) Show that the following conditions are equivalent (in which case we say that L/K is Galois):
 - (a) L/K is separable and $L^{\operatorname{Aut}_K(L)} = K$.
 - (b) L/K is separable and any polynomial $f \in K[x]$ that has one root in L has all its roots in L.
- (3) Let $E \subset L$ be an intermediate extension of L/K and assume that L/K and E/K are Galois. Show that there is a natural surjection $\operatorname{Gal}(L/K) \to \operatorname{Gal}(E/K)$ sending an element τ to its restriction $\tau_{|E}$.

Exercise 3.2. Let A be a Dedekind domain with fraction field K and L/K a finite Galois extension. Denote by B the integral closure of A in L. Let $\mathfrak{p} \subset A$ be a non-zero prime ideal of A.

Show that the Galois group $G = \operatorname{Gal}(L/K)$ acts transitively on the set of non-zero prime ideals $\mathfrak{q} \subset B$ which lie over \mathfrak{p} (i.e. $\mathfrak{q} \cap A = \mathfrak{p}$).

To this end assume there exist $\mathfrak{q}, \mathfrak{q}' \subset B$ over \mathfrak{p} such that $\sigma(\mathfrak{q}) \neq \mathfrak{q}'$, for all $\sigma \in G$ and show that this leads to a contradiction as follows:

- (1) Show that there exists an element $x \in B$ with $x \equiv 0 \mod \mathfrak{q}'$ and $x \equiv 1 \mod \sigma(\mathfrak{q})$, for all $\sigma \in G$.
- (2) Let $\operatorname{Nm}_{L/K} : L \to K$ be the norm map. Recall that $\operatorname{Nm}_{L/K}(y) = \prod_{\sigma \in G} \sigma(y)$, for $y \in L$. Show that it induces a multiplicative map $\operatorname{Nm}_{B/A} : B \to A$, which maps any non-zero prime ideal $\mathfrak{r} \subset B$ over \mathfrak{p} into \mathfrak{p} .
- (3) Deduce the contradiction by showing that one condition on x in (1) implies $\operatorname{Nm}_{B/A}(x) \in \mathfrak{p}$, while the other implies $\operatorname{Nm}_{B/A}(x) \notin \mathfrak{p}$.

¹This exercise sheet will be discussed on November 7. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math.fu-berlin. de

Exercise 3.3. Let $\mathfrak{p} \subset A$, L/K, G and B be as in Exercise 3.2 above. Let \mathfrak{q} , $\mathfrak{q}' \subset B$ be two prime ideals over \mathfrak{p} . Denote by $D_{\mathfrak{q}}$ and $D_{\mathfrak{q}'} \subset G$ the respective decomposition groups.

- (1) Show that there exists a $\sigma \in G$ such that $D_{\mathfrak{q}} = \sigma \circ D_{\mathfrak{q}'} \circ \sigma^{-1}$.
- (2) Show that the index of $D_{\mathfrak{q}}$ in G is equal to the number of prime ideals in B lying over \mathfrak{p} .

Exercise 3.4. Let $\mathfrak{p} \subset A$, K be as in Exercise 3.2. Let $K_{\mathfrak{p}}$ be the completion of K along \mathfrak{p} . Fix algebraic closures $K \hookrightarrow \overline{K}$ and $K_{\mathfrak{p}} \hookrightarrow \overline{K}_{\mathfrak{p}}$ and denote by $K^{\text{sep}} \subset \overline{K}$ and $K_{\mathfrak{p}}^{\text{sep}} \subset \overline{K}_{\mathfrak{p}}$ the separable closure of K and $K_{\mathfrak{p}}$ and by G(K) and $G(K_{\mathfrak{p}})$ the corresponding absolute Galois groups, respectively. Choose of an embedding $\iota : \overline{K} \hookrightarrow \overline{K}_{\mathfrak{p}}$.

- (1) Show that ι induces an injective group homomorphism $G(K_{\mathfrak{p}}) \hookrightarrow G(K)$.
- (2) Let L/K be a finite Galois extension inside K and B the integral closure of A in L. Show that there exists a unique prime $\mathfrak{q}_{\iota} \subset B$ lying over \mathfrak{p} such that the composition $L \hookrightarrow \overline{K} \xrightarrow{\iota} \overline{K}_{\mathfrak{p}}$ factors like $L \hookrightarrow L_{\mathfrak{q}} \hookrightarrow \overline{K}_{\mathfrak{p}}$, where the first map is the natural one and the second comes from viewing $L_{\mathfrak{q}}$ as a subextension of $\overline{K}_{\mathfrak{p}}/K_{\mathfrak{p}}$.
- (3) With q_{ι} as in (2) above show that there is a commutative diagram

where the vertical maps are the natural quotient maps.

(4) Denote by $D_{\mathfrak{p},\iota}(K) \subset G(K)$ the image of the map from (1). Show that if we choose another embedding $\iota': \overline{K} \hookrightarrow \overline{K}_{\mathfrak{p}}$, then there exists $\sigma \in G(K)$ such that $\sigma \circ D_{\mathfrak{p},\iota}(K) \circ \sigma^{-1} = D_{\mathfrak{p},\iota}(K)$.

Remark 1. The group $D_{\mathfrak{p},\iota}$ in the exercise above is called absolute decomposition group with respect to ι . By part (2) choosing ι corresponds to choose a compatible system of primes over \mathfrak{p} in the finite Galois extension over K. By part (4) the image of $D_{\mathfrak{p},\iota}(K)$ in the abelian absolute Galois group $G^{ab}(K)$ does not depend on the choice of ι . We denote this image by $D^{ab}_{\mathfrak{p}}(K)$.