Exercise 13 for Number theory III]

Kay Rülling

Exercise 13.1. Let L be a field we define the second Milnor K-theory of L to be

$$
K_{2}^{M}(L)=L^{\times} \otimes_{\mathbb{Z}} L^{\times} /<a \otimes(1-a) \mid a \in L \backslash\{0,1\}>
$$

The class of an element $a \otimes b$ in $K_{2}^{M}(L)$ is denoted by $\{a, b\}$. Show that the following relations hold:
(1) $\left\{a a^{\prime}, b\right\}=\{a, b\}+\left\{a^{\prime}, b\right\},\left\{a, b b^{\prime}\right\}=\{a, b\}+\left\{a, b^{\prime}\right\},\{a, 1-a\}=$ 0 .
(2) $\{a,-a\}=0,\{a, b\}=-\{b, a\}$. (Hint: To show the first equality consider the identity $-a=(1-a) /\left(1-a^{-1}\right)$; the second equality follows from the first.)
Exercise 13.2. Let K be a local field $(\neq \mathbb{C}, \mathbb{R})$. Let $p \neq 2$ be the characteristic of the residue field of K and $n \in \mathbb{N}$ with $(n, p)=1$. Assume that K contains an n-th primitive root of unity ζ.
(1) Show that for any $a \in K^{\times}$there exists a unique continuous homomorphism $\chi_{a}: G\left(K^{\text {sep }} / K\right) \rightarrow \mathbb{Q} / \mathbb{Z}$ of order $d \mid n$ which (see Exercise $11.2(1))$ corresponds to $\left(K(\sqrt[n]{a}), \sigma_{a}\right)$, where $K(\sqrt[n]{a})$ denotes the splitting field of $X^{n}-a$ and $\sigma_{a} \in G(K(\sqrt[n]{a}) / K)$ is the element, which on a root α of $X^{n}-a$ acts via $\sigma_{a}(\alpha)=\zeta^{n / d} \alpha$.
(2) Show that for $a, a^{\prime} \in K^{\times}$we have $\chi_{a a^{\prime}}=\chi_{a}+\chi_{a^{\prime}}$.

We define the map

$$
(-,-)_{n, K}: K^{\times} \times K^{\times} \rightarrow \frac{1}{n} \mathbb{Z} / \mathbb{Z}, \quad(a, b) \mapsto(a, b)_{n, K}:=\operatorname{inv}\left(\left[A\left(\chi_{a}, b\right)\right]\right)
$$

where inv : $\operatorname{Br}(K) \xrightarrow{\simeq} \mathbb{Q} / \mathbb{Z}$ is the isomorphism from the lecture.
(3) Show that $(-,-)_{n, K}$ is \mathbb{Z}-bilinear, i.e.

$$
\left(a a^{\prime}, b\right)_{n, K}=(a, b)_{n, K}+\left(a^{\prime}, b\right)_{n, K}, \quad\left(a, b b^{\prime}\right)_{n, K}=(a, b)_{n, K}+\left(a, b^{\prime}\right)_{n, K}
$$

(4) Show that $(a, 1-a)_{n, K}=0$. (Hint: Let $\alpha \in K(\sqrt[n]{a})$ be a solution of $X^{n}-a$ and show that $1-a=1-\alpha^{n}=\prod_{i=0}^{n-1}\left(1-\zeta^{i} \alpha\right)$ is contained in $\operatorname{Nm}_{K(\sqrt[n]{a}) / K}\left(K(\sqrt[n]{a})^{\times}\right)$.)

[^0](5) Conclude that $(-,-)_{n, K}$ induces a homomorphism
$$
h_{n, K}: K_{2}^{M}(K) / n \cdot K_{2}^{M}(K) \rightarrow \frac{1}{n} \mathbb{Z} / \mathbb{Z}, \quad\{a, b\} \mapsto(a, b)_{n, K} .
$$
(6) Show that if $K(\sqrt[n]{a})$ is unramified of degree $d \mid n$ over K, then $h_{n, K}(\{a, b\})=v_{K}(b) / d$ in $\frac{1}{n} \mathbb{Z} / \mathbb{Z}$.
(7) Conclude from (6) that $h_{n, k}$ is surjective.
(8) Let $\pi \in \mathcal{O}_{K}$ be a local parameter and $q=p^{s}$ the cardinality of the residue field. Recall from Exercise 4.2, that we have $K^{\times}=\pi^{\mathbb{Z}} \times \mu_{q-1}(K) \times U_{K}^{(1)}$ and that by assumption $n \mid(q-1)$. Let $\xi \in \mu_{q-1}$ a primitive $(q-1)$ th root of unity.

Show that as a group $K_{2}^{M}(K) / n K_{2}^{M}(K)$ is generated by the element $\{\pi, \xi\}$ and $\{\xi,-1\}$. (Hint: By Hensel's Lemma any element in $U_{K}^{(1)}$ is an nth power; use the relations from Exercise 13.1.)
(9) Show that $\mu_{q-1}(K) \cap \operatorname{Nm}_{K(\sqrt[n]{\pi}) / K}\left(K(\sqrt[n]{\pi})^{\times}\right) \subset\left(K^{\times}\right)^{n}$.
(10) Assume that $2 n \mid(q-1)$. Show that $\{\xi,-1\} \equiv 0 \bmod n K_{2}^{M}(K)$. Conclude that

$$
h_{n, K}: K_{2}^{M}(K) / n K_{2}^{M}(K) \stackrel{\simeq}{\leftrightarrows} \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

is an isomorphism.
Remark 1. Notice that in the situation above we have $\frac{1}{n} \mathbb{Z} / \mathbb{Z}=\operatorname{Br}(K)[n]$. One can show that under the above assumptions $\operatorname{Br}(K)[n]$ is isomorphic to $H^{2}\left(G\left(k^{\text {sep }} / k\right), \mu_{n}\left(k^{\text {sep }}\right)^{\otimes 2}\right)$ (by Hilbert 90). Thus we obtain an isomorphism

$$
h_{n, K}: K_{2}^{M}(K) / n K_{2}^{M}(K) \xrightarrow{\simeq} H^{2}\left(G\left(k^{\mathrm{sep}} / k\right), \mu_{n}\left(k^{\mathrm{sep}}\right)^{\otimes 2}\right) .
$$

It was proven by Suslin-Merkurjev in 1982 that there is such an isomorphism for all fields K and all natural numbers n, which are invertible in K^{\times}.

Exercise 13.3. Let L be a global field and $\mathfrak{p} \subset \mathcal{O}_{L}$ a maximal prime. Denote by $L_{\mathfrak{p}}$ the completion of L along \mathfrak{p} and by $\pi \in \mathfrak{p} \mathcal{O}_{L_{\mathfrak{p}}}$ a local parameter. Let n be a natural number which is prime to the residue characteristic of $L_{\mathfrak{p}}$. We assume that L contains an n-th primitive root of unity. We define the n-th power residue symbol to be the following map

$$
\mathcal{O}_{L}^{\times} \rightarrow \frac{1}{n} \mathbb{Z} / \mathbb{Z}, \quad u \mapsto\left(\frac{u}{\mathfrak{p}}\right):=h_{n, K}(\{\pi, u\}),
$$

where we use the notation from Exercise 13.2 ,
(1) Show that

$$
\left(\frac{u}{\mathfrak{p}}\right)=1 \Longleftrightarrow u \text { is an } n \text {th power modulo } \mathfrak{p} \text {. }
$$

(2) Show that for $L=\mathbb{Q}, \mathfrak{p}=p$ an odd prime and $n=2$, the symbol defined above is equal to the Legendre symbol from Exercise 7.2.

[^0]: ${ }^{1}$ This exercise sheet will be discussed on January 30. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math.fu-berlin. de or l.zhang@fu-berlin.de

